Classification of the plant-associated lifestyle of Pseudomonas strains using genome properties and machine learning

Martin. Goal 2: Zero Hunger. United Nations Sustainable Development https://www.un.org/sustainabledevelopment/hunger/.
Accessed 31 Aug 2021.

Zhang, J. et al. Harnessing the plant microbiome to promote the growth of agricultural crops. Microbiol. Res. 245, 126690 (2021).

CAS 
PubMed 

Google Scholar 

Fasusi, O. A., Cruz, C. & Babalola, O. O. Agricultural sustainability: Microbial biofertilizers in rhizosphere management. Agriculture 11, (2021).

Arif, I., Batool, M. & Schenk, P. M. Plant microbiome engineering: Expected benefits for improved crop growth and resilience. Trends Biotechnol. 38, 1385–1396 (2020).

CAS 
PubMed 

Google Scholar 

Timmusk, S., Behers, L., Muthoni, J., Muraya, A. & Aronsson, A.-C. Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8, 49–49 (2017).

PubMed 
PubMed Central 

Google Scholar 

Vejan, P., Abdullah, R., Khadiran, T., Ismail, S. & Nasrulhaq Boyce, A. Role of plant growth promoting rhizobacteria in agricultural sustainability—A review. Molecules 21, 573 (2016).

PubMed Central 

Google Scholar 

Backer, R. et al. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 9, 1473 (2018).

PubMed 
PubMed Central 

Google Scholar 

Bakker, P. A. H. M., Berendsen, R. L., Doornbos, R. F., Wintermans, P. C. A. & Pieterse, C. M. J. The rhizosphere revisited: root microbiomics. Front. Plant Sci. 4, 165–165 (2013).

PubMed 
PubMed Central 

Google Scholar 

Lugtenberg, B. J. J., Malfanova, N., Kamilova, F. & Berg, G. Microbial control of plant root diseases. in Molecular Microbial Ecology of the Rhizosphere 575–586 (Wiley, 2013). https://doi.org/10.1002/9781118297674.ch54.

Vacheron, J. et al. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4, 356 (2013).

PubMed 
PubMed Central 

Google Scholar 

Köhl, L., Oehl, F. & van der Heijden, M. G. A. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol. Appl. 24, 1842–1853 (2014).

PubMed 

Google Scholar 

Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K. & Singh, V. Plant growth promoting rhizobacteria (PGPR): Current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 7, 096–102 (2015).

CAS 

Google Scholar 

Finkel, O. M., Castrillo, G., Herrera Paredes, S., Salas González, I. & Dangl, J. L. Understanding and exploiting plant beneficial microbes. Curr. Opin. Plant Biol. 38, 155–163 (2017).

PubMed 
PubMed Central 

Google Scholar 

Ilangumaran, G. & Smith, D. L. Plant growth promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Front. Plant Sci. 8, 1768 (2017).

PubMed 
PubMed Central 

Google Scholar 

Kumar, A., Patel, J. S., Meena, V. S. & Srivastava, R. Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocatal. Agric. Biotechnol. 20, 101271 (2019).

Google Scholar 

Qessaoui, R. et al. Applications of new rhizobacteria pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Sci. Rep. 9, 12832 (2019).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Shaikh, S., Yadav, N. & Markande, A. R. Interactive potential of Pseudomonas species with plants. J. Appl. Biol. Biotechnol. 8, 101–111 (2020).

CAS 

Google Scholar 

Sitaraman, R. Pseudomonas spp. as models for plant-microbe interactions. Front. Plant Sci. 6, 787–787 (2015).

PubMed 
PubMed Central 

Google Scholar 

Baltrus, D. A. et al. Dynamic evolution of pathogenicity revealed by sequencing and comparative genomics of 19 pseudomonas syringae isolates. PLoS Pathog. 7, e1002132 (2011).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Liu, B., Zheng, D., Jin, Q., Chen, L. & Yang, J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47, D687–D692 (2019).

CAS 
PubMed 

Google Scholar 

Loper, J. E. et al. Comparative genomics of plant-associated Pseudomonas spp.: Insights into diversity and inheritance of traits involved in multitrophic interactions. PLOS Genet. 8, e1002784 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Passera, A. et al. Not just a pathogen? Description of a plant-beneficial pseudomonas syringae strain. Front. Microbiol. 10, 1409–1409 (2019).

PubMed 
PubMed Central 

Google Scholar 

Richardson, L. J. et al. Genome properties in 2019: A new companion database to InterPro for the inference of complete functional attributes. Nucleic Acids Res. 47, D564–D572 (2018).

PubMed Central 

Google Scholar 

Koehorst, J. J. et al. Comparison of 432 Pseudomonas strains through integration of genomic, functional, metabolic and expression data. Sci. Rep. 6, 38699 (2016).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

te Molder, D., Poncheewin, W., Schaap, P. J. & Koehorst, J. J. Machine learning approaches to predict the Plant-associated phenotype of Xanthomonas strains. BMC Genom. 22, 848 (2021).

Google Scholar 

Melnyk, R. A., Hossain, S. S. & Haney, C. H. Convergent gain and loss of genomic islands drive lifestyle changes in plant-associated Pseudomonas. ISME J. 13, 1575–1588 (2019).

PubMed 
PubMed Central 

Google Scholar 

Winsor, G. L. et al. Enhanced annotations and features for comparing thousands of Pseudomonas genomes in the Pseudomonas genome database. Nucleic Acids Res. 44, D646–D653 (2016).

CAS 
PubMed 

Google Scholar 

Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

MATH 

Google Scholar 

Visnovsky, S. B. et al. Using multilocus sequence analysis to distinguish pathogenic from saprotrophic strains of Pseudomonas from stone fruit and kiwifruit. Eur. J. Plant Pathol. 155, 643–658 (2019).

CAS 

Google Scholar 

Allen, J. P., Snitkin, E., Pincus, N. B. & Hauser, A. R. Forest and trees: Exploring bacterial virulence with genome-wide association studies and machine learning. Trends Microbiol. 29, 621–633 (2021).

CAS 
PubMed 

Google Scholar 

Monteil, C. L. et al. Soil water flow is a source of the plant pathogen Pseudomonas syringae in subalpine headwaters. Environ. Microbiol. 16, 2038–2052 (2014).

PubMed 

Google Scholar 

Hassan, J. A., de la Torre-Roche, R., White, J. C. & Lewis, J. D. Soil mixture composition alters Arabidopsis susceptibility to Pseudomonas syringae infection. Plant Direct 2, e00044–e00044 (2018).

PubMed 
PubMed Central 

Google Scholar 

Bergman, N. H., Passalacqua, K. D., Hanna, P. C. & Qin, Z. S. Operon prediction for sequenced bacterial genomes without experimental information. Appl. Environ. Microbiol. 73, 846 (2007).

ADS 
CAS 
PubMed 

Google Scholar 

Ramkumar, G., Lee, S. W., Weon, H.-Y., Kim, B.-Y. & Lee, Y. H. First report on the whole genome sequence of Pseudomonas cichorii strain JBC1 and comparison with other Pseudomonas species. Plant. Pathol. 64, 63–70 (2015).

CAS 

Google Scholar 

Villarreal-Chiu, J. F., Quinn, J. P. & McGrath, J. W. The genes and enzymes of phosphonate metabolism by bacteria, and their distribution in the marine environment. Front. Microbiol. 3, 19–19 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Yu, X. et al. Diversity and abundance of phosphonate biosynthetic genes in nature. Proc. Natl. Acad. Sci. USA 110, 20759–20764 (2013).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

White, A. K. & Metcalf, W. W. Microbial metabolism of reduced phosphorus compounds. Annu. Rev. Microbiol. 61, 379–400 (2007).

CAS 
PubMed 

Google Scholar 

Shiraishi, T. & Kuzuyama, T. Biosynthetic pathways and enzymes involved in the production of phosphonic acid natural products. Biosci. Biotechnol. Biochem. 85, 42–52 (2021).

PubMed 

Google Scholar 

Lamarche, M. G., Wanner, B. L., Crépin, S. & Harel, J. The phosphate regulon and bacterial virulence: A regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol. Rev. 32, 461–473 (2008).

CAS 
PubMed 

Google Scholar 

Ernst, D. C., Anderson, M. E. & Downs, D. M. l-2,3-Diaminopropionate generates diverse metabolic stresses in Salmonella enterica. Mol. Microbiol. 101, 210–223 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Trapet, P. et al. The Pseudomonas fluorescens siderophore pyoverdine weakens Arabidopsis thaliana defense in favor of growth in iron-deficient conditions. Plant Physiol. 171, 675–693 (2016).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Bultreys, A. & Gheysen, I. Siderophore uses in Pseudomonas syringae identification. In Pseudomonas syringae Pathovars and Related Pathogens—Identification, Epidemiology and Genomics (eds Fatmi, M. et al.) 21–35 (Springer Netherlands, 2008). https://doi.org/10.1007/978-1-4020-6901-7_2.

Chapter 

Google Scholar 

Kobylarz, M. J. et al. Synthesis of L-2, 3-diaminopropionic acid, a siderophore and antibiotic precursor. Chem. Biol. 21, 379–388 (2014).

CAS 
PubMed 

Google Scholar 

Aznar, A. & Dellagi, A. New insights into the role of siderophores as triggers of plant immunity: What can we learn from animals?. J. Exp. Bot. 66, 3001–3010 (2015).

CAS 
PubMed 

Google Scholar 

Wang, X., Preston, J. F. 3rd. & Romeo, T. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J. Bacteriol. 186, 2724–2734 (2004).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Adachi, O. et al. Characterization of quinohemoprotein amine dehydrogenase from Pseudomonas putida. Biosci. Biotechnol. Biochem. 62, 469–478 (1998).

CAS 
PubMed 

Google Scholar 

Büttner, D. Protein export according to schedule: Architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol. Rev. 76, 262 (2012).

PubMed 
PubMed Central 

Google Scholar 

Lombardi, C. et al. Structural and functional characterization of the type three secretion system (T3SS) needle of Pseudomonas aeruginosa. Front. Microbiol. 10, 573 (2019).

PubMed 
PubMed Central 

Google Scholar 

Trantas, E. et al. Comparative genomic analysis of multiple strains of two unusual plant pathogens: Pseudomonas corrugata and Pseudomonas mediterranea. Front. Microbiol. 6, (2015).

Diallo, M. D. et al. Pseudomonas syringae naturally lacking the canonical type III secretion system are ubiquitous in nonagricultural habitats, are phylogenetically diverse and can be pathogenic. ISME J. 6, 1325–1335 (2012).

MathSciNet 
CAS 
PubMed Central 

Google Scholar 

Gazi, A. D. et al. Phylogenetic analysis of a gene cluster encoding an additional, rhizobial-like type III secretion system that is narrowly distributed among Pseudomonas syringae strains. BMC Microbiol. 12, 188 (2012).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Wawrik, B., Kerkhof, L., Kukor, J. & Zylstra, G. Effect of different carbon sources on community composition of bacterial enrichments from soil. Appl. Environ. Microbiol. 71, 6776–6783 (2005).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Thakur, M. & Sohal, B. S. Role of elicitors in inducing resistance in plants against pathogen infection: A review. ISRN Biochem. 2013, 762412–762412 (2013).

PubMed 
PubMed Central 

Google Scholar 

Regnault, T. et al. The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nat. Plants 1, 15073 (2015).

CAS 
PubMed 

Google Scholar 

Morrone, D. et al. Gibberellin biosynthesis in bacteria: Separate ent-copalyl diphosphate and ent-kaurene synthases in Bradyrhizobium japonicum. FEBS Lett. 583, 475–480 (2009).

CAS 
PubMed 

Google Scholar 

Bharathi, R., Vivekananthan, R., Harish, S., Ramanathan, A. & Samiyappan, R. Rhizobacteria-based bio-formulations for the management of fruit rot infection in chillies. Crop Prot. 23, 835–843 (2004).

Google Scholar 

Ruinelli, M., Blom, J., Smits, T. H. M. & Pothier, J. F. Comparative genomics and pathogenicity potential of members of the Pseudomonas syringae species complex on Prunus spp. BMC Genom. 20, 172 (2019).

Google Scholar 

Alfano, J. R. et al. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97, 4856–4861 (2000).

ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wen-Ling, D., Rehm Amos, H., Charkowski, A. O., Rojas, C. M. & Collmer, A. Pseudomonas syringae exchangeable effector loci: Sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J. Bacteriol. 185, 2592–2602 (2003).

Google Scholar 

Warris, S. et al. pyPaSWAS: Python-based multi-core CPU and GPU sequence alignment. PLoS ONE 13, e0190279 (2018).

PubMed 
PubMed Central 

Google Scholar 

Koren, S. et al. Canu: Scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27, 722–736 (2017).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Koehorst, J. J. et al. SAPP: Functional genome annotation and analysis through a semantic framework using FAIR principles. Bioinformatics 34, 1401–1403 (2017).

PubMed Central 

Google Scholar 

Hyatt, D. et al. Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinform. 11, 119 (2010).

Google Scholar 

Haft, D. H. et al. TIGRFAMs: A protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Jones, P. et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 30, 1236–1240 (2014).

CAS 
PubMed 
PubMed Central 

Google Scholar 

El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2018).

PubMed Central 

Google Scholar 

van Dam, J. C. J., Koehorst, J. J. J., Vik, J. O., Schaap, P. J. & Suarez-Diez, M. Interoperable genome annotation with GBOL, an extendable infrastructure for functional data mining. bioRxiv 184747 (2017).

van Dam, J. C. J. et al. The Empusa code generator and its application to GBOL, an extendable ontology for genome annotation. Sci. Data 6, 254 (2019).

PubMed 
PubMed Central 

Google Scholar 

Lee, I., Kim, Y. O., Park, S.-C. & Chun, J. OrthoANI: An improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66, 1100–1103 (2016).

CAS 
PubMed 

Google Scholar 

Bergstrand, L. H., Neufeld, J. D. & Doxey, A. C. Pygenprop: A Python library for programmatic exploration and comparison of organism Genome Properties. Bioinformatics (2019).

Liaw, A. & Wiener, M. Classification and regression by randomForest. R News 2, 18–22 (2002).

Google Scholar 

Source: www.nature.com