Antibodies to combat viral infections: development strategies and progress

Köhler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

PubMed 
Article 

Google Scholar 

Mullard, A. FDA approves 100th monoclonal antibody product. Nat. Rev. Drug Discov. 20, 491–495 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Behring, E. V. & Kitasato, S. Über das Zustandekommen der Diphtherie-Immunität und der Tetanus-Immunität bei Thieren. Dtsch Med. Wochenschrift 49, 1113–1114 (1890).

Google Scholar 

Motley, M. P., Banerjee, K. & Fries, B. C. Monoclonal antibody-based therapies for bacterial infections. Curr. Opin. Infect. Dis. 32, 210–216 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Raafat, D., Otto, M., Reppschläger, K., Iqbal, J. & Holtfreter, S. Fighting Staphylococcus aureus biofilms with monoclonal antibodies. Trends Microbiol. 27, 303–322 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Hjelholt, A., Christiansen, G., Sørensen, U. S. & Birkelund, S. IgG subclass profiles in normal human sera of antibodies specific to five kinds of microbial antigens. Pathog. Dis. 67, 206–213 (2013).

CAS 
PubMed 
Article 

Google Scholar 

Bournazos, S., Corti, D., Virgin, H. W. & Ravetch, J. V. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature 588, 485–490 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Kabanova, A. et al. Antibody-driven design of a human cytomegalovirus gHgLpUL128L subunit vaccine that selectively elicits potent neutralizing antibodies. Proc. Natl Acad. Sci. USA 111, 17965–17970 (2014).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Zheng, Q. et al. Viral neutralization by antibody-imposed physical disruption. Proc. Natl Acad. Sci. USA 116, 26933–26940 (2019).

CAS 
PubMed Central 
Article 

Google Scholar 

Hikmet, F. et al. The protein expression profile of ACE2 in human tissues. Mol. Syst. Biol. 16, e9610 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Taylor, P. C. et al. Neutralizing monoclonal antibodies for treatment of COVID-19. Nat. Rev. Immunol. 21, 382–393 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Lu, L. L., Suscovich, T. J., Fortune, S. M. & Alter, G. Beyond binding: antibody effector functions in infectious diseases. Nat. Rev. Immunol. 18, 46–61 (2018).

CAS 
PubMed 
Article 

Google Scholar 

Winkler, E. S. et al. Human neutralizing antibodies against SARS-CoV-2 require intact Fc effector functions for optimal therapeutic protection. Cell 184, 1804–1820.e16 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Schäfer, A. et al. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J. Exp. Med. https://doi.org/10.1084/jem.20201993 (2021).

Case, J. B. et al. Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains. Preprint at bioRxiv https://doi.org/10.1101/2022.03.17.484787 (2022).

Bournazos, S., Gupta, A. & Ravetch, J. V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 20, 633–643 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Halstead, S. B. et al. Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg. Infect. Dis. 8, 1474–1479 (2002).

PubMed 
PubMed Central 
Article 

Google Scholar 

Dejnirattisai, W. et al. Cross-reacting antibodies enhance dengue virus infection in humans. Science 328, 745–748 (2010).

CAS 
PubMed 
Article 

Google Scholar 

Beltramello, M. et al. The human immune response to Dengue virus is dominated by highly cross-reactive antibodies endowed with neutralizing and enhancing activity. Cell Host Microbe 8, 271–283 (2010).

CAS 
PubMed 
Article 

Google Scholar 

Xu, L., Ma, Z., Li, Y., Pang, Z. & Xiao, S. in Advances in Immunology Vol. 151 (eds Frederick W. A. & Kenneth M. M.) 99–133 (Academic, 2021).

Mair-Jenkins, J. et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. J. Infect. Dis. 211, 80–90 (2015).

CAS 
PubMed 
Article 

Google Scholar 

Casadevall, A., Dadachova, E. & Pirofski, L.-A. Passive antibody therapy for infectious diseases. Nat. Rev. Microbiol. 2, 695–703 (2004).

CAS 
PubMed 
Article 

Google Scholar 

Hammarström, L., Marcotte, H., Piralla, A., Baldanti, F. & Pan-Hammarström, Q. Antibody therapy for COVID-19. Curr. Opin. Allergy Clin. Immunol. 21, 553–558 (2021).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Simonovich, V. A. et al. A randomized trial of convalescent plasma in COVID-19 severe pneumonia. N. Engl. J. Med. 384, 619–629 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Bégin, P. et al. Convalescent plasma for hospitalized patients with COVID-19: an open-label, randomized controlled trial. Nat. Med. 27, 2012–2024 (2021).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Ray, Y. et al. A phase 2 single center open label randomised control trial for convalescent plasma therapy in patients with severe COVID-19. Nat. Commun. 13, 383 (2022).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

McCafferty, J., Griffiths, A. D., Winter, G. & Chiswell, D. J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

CAS 
PubMed 
Article 

Google Scholar 

Hoogenboom, H. R. Overview of antibody phage-display technology and its applications. Methods Mol. Biol. 178, 1–37 (2002).

CAS 
PubMed 

Google Scholar 

Burton, D. R. et al. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266, 1024–1027 (1994).

CAS 
PubMed 
Article 

Google Scholar 

Ferrara, F. et al. A pandemic-enabled comparison of discovery platforms demonstrates a naïve antibody library can match the best immune-sourced antibodies. Nat. Commun. 13, 462 (2022).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Maynard, J. A. et al. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20, 597–601 (2002).

CAS 
PubMed 
Article 

Google Scholar 

Burkovitz, A. & Ofran, Y. Understanding differences between synthetic and natural antibodies can help improve antibody engineering. mAbs 8, 278–287 (2016).

CAS 
PubMed 
Article 

Google Scholar 

Novobrantseva, T. et al. Stochastic pairing of Ig heavy and light chains frequently generates B cell antigen receptors that are subject to editing in vivo. Int. Immunol. 17, 343–350 (2005).

CAS 
PubMed 
Article 

Google Scholar 

Tiegs, S. L., Russell, D. M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

CAS 
PubMed 
Article 

Google Scholar 

Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 (1993).

CAS 
PubMed 
Article 

Google Scholar 

Norris, M. H. & Blackburn, J. K. Raxibacumab: a panacea for anthrax disease? Lancet Infect. Dis. 20, 886–887 (2020).

Google Scholar 

Pedrioli, A. & Oxenius, A. Single B cell technologies for monoclonal antibody discovery. Trends Immunol. 42, 1143–1158 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Klein, U., Küppers, R. & Rajewsky, K. Variable region gene analysis of B cell subsets derived from a 4-year-old child: somatically mutated memory B cells accumulate in the peripheral blood already at young age. J. Exp. Med. 180, 1383–1393 (1994).

CAS 
PubMed 
Article 

Google Scholar 

Lee, E. C. et al. Complete humanization of the mouse immunoglobulin loci enables efficient therapeutic antibody discovery. Nat. Biotechnol. 32, 356–363 (2014).

CAS 
PubMed 
Article 

Google Scholar 

Scheid, J. F. et al. Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals. Nature 458, 636–640 (2009).

CAS 
PubMed 
Article 

Google Scholar 

Wu, X. et al. Rational design of envelope identifies broadly neutralizing human monoclonal antibodies to HIV-1. Science 329, 856–861 (2010).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Huang, J. et al. Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491, 406–412 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Kong, L. et al. Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120. Nat. Struct. Mol. Biol. 20, 796–803 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Mascola, J. R. et al. Protection of macaques against pathogenic simian/human immunodeficiency virus 89.6PD by passive transfer of neutralizing antibodies. J. Virol. 73, 4009–4018 (1999).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Moldt, B. et al. Highly potent HIV-specific antibody neutralization in vitro translates into effective protection against mucosal SHIV challenge in vivo. Proc. Natl Acad. Sci. USA 109, 18921–18925 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wang, Q. et al. A combination of human broadly neutralizing antibodies against hepatitis B virus HBsAg with distinct epitopes suppresses escape mutations. Cell Host Microbe 28, 335–349.e6 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Hartley, G. E. et al. Rapid generation of durable B cell memory to SARS-CoV-2 spike and nucleocapsid proteins in COVID-19 and convalescence. Sci. Immunol. 5, eabf8891 (2020).

PubMed 
PubMed Central 
Article 

Google Scholar 

Macagno, A. et al. Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex. J. Virol. 84, 1005–1013 (2010).

CAS 
PubMed 
Article 

Google Scholar 

McCoy, L. E. & Burton, D. R. Identification and specificity of broadly neutralizing antibodies against HIV. Immunol. Rev. 275, 11–20 (2017).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Kwakkenbos, M. J. et al. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 16, 123–128 (2010).

CAS 
PubMed 
Article 

Google Scholar 

Traggiai, E. et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat. Med. 10, 871–875 (2004).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Steinitz, M., Klein, G., Koskimies, S. & Makel, O. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 269, 420–422 (1977).

CAS 
PubMed 
Article 

Google Scholar 

Corti, D. & Lanzavecchia, A. Efficient methods to isolate human monoclonal antibodies from memory B cells and plasma cells. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.AID-0018-2014 (2014).

Kuraoka, M. et al. Complex antigens drive permissive clonal selection in germinal centers. Immunity 44, 542–552 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Su, K.-Y., Watanabe, A., Yeh, C.-H., Kelsoe, G. & Kuraoka, M. Efficient culture of human naive and memory B cells for use as APCs. J. Immunol. 197, 4163–4176 (2016).

CAS 
PubMed 
Article 

Google Scholar 

Luo, X. M. et al. Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. Blood 113, 1422–1431 (2009).

CAS 
PubMed 
Article 

Google Scholar 

McCarthy, K. R. et al. Memory B cells that cross-react with group 1 and group 2 influenza A viruses are abundant in adult human repertoires. Immunity 48, 174–184.e9 (2018).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lindner, J. M. et al. Human memory B cells harbor diverse cross-neutralizing antibodies against BK and JC polyomaviruses. Immunity 50, 668–676.e5 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Wagar, L. E. et al. Modeling human adaptive immune responses with tonsil organoids. Nat. Med. 27, 125–135 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Tanno, H. et al. A facile technology for the high-throughput sequencing of the paired VH:VL and TCRβ:TCRα repertoires. Sci. Adv. 6, eaay9093 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

DeKosky, B. J. et al. In-depth determination and analysis of the human paired heavy- and light-chain antibody repertoire. Nat. Med. 21, 86–91 (2015).

CAS 
PubMed 
Article 

Google Scholar 

Chen, D. et al. Coupled analysis of transcriptome and BCR mutations reveals role of OXPHOS in affinity maturation. Nat. Immunol. 22, 904–913 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Thompson, E. A. et al. Metabolic programs define dysfunctional immune responses in severe COVID-19 patients. Cell Rep. 34, 108863 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Buus, T. B. et al. Improving oligo-conjugated antibody signal in multimodal single-cell analysis. eLife https://doi.org/10.7554/eLife.61973 (2021).

Ramaswamy, A. et al. Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity 54, 1083–1095.e7 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lavinder, J. J., Horton, A. P., Georgiou, G. & Ippolito, G. C. Next-generation sequencing and protein mass spectrometry for the comprehensive analysis of human cellular and serum antibody repertoires. Curr. Opin. Chem. Biol. 24, 112–120 (2015).

CAS 
PubMed 
Article 

Google Scholar 

Georgiou, G. et al. The promise and challenge of high-throughput sequencing of the antibody repertoire. Nat. Biotechnol. 32, 158–168 (2014).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Use of Convalescent Whole Blood or Plasma Collected from Patients Recovered from Ebola Virus Disease for Transfusion, as an Empirical Treatment during Outbreaks: Interim Guidance for National Health Authorities and Blood Transfusion Services Version 1.0 (World Health Organization, 2014).

Setliff, I. et al. High-throughput mapping of B cell receptor sequences to antigen specificity. Cell 179, 1636–1646.e15 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Finn, J. A. et al. Identification of structurally related antibodies in antibody sequence databases using rosetta-derived position-specific scoring. Structure 28, 1124–1130.e5 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Sevy, A. M. et al. Computationally designed cyclic peptides derived from an antibody loop increase breadth of binding for influenza variants. Structure 28, 1114–1123.e4 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Foglierini, M., Pappas, L., Lanzavecchia, A., Corti, D. & Perez, L. AncesTree: an interactive immunoglobulin lineage tree visualizer. PLoS Comput. Biol. 16, e1007731 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Kramer, K. J. et al. Potent neutralization of SARS-CoV-2 variants of concern by an antibody with an uncommon genetic signature and structural mode of spike recognition. Cell Rep. 37, 109784 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lund, J. et al. Human FcγRI and FcγRII interact with distinct but overlapping sites on human IgG. J. Immunol. 147, 2657–2662 (1991).

CAS 
PubMed 

Google Scholar 

Lee, W. S., Wheatley, A. K., Kent, S. J. & DeKosky, B. J. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat. Microbiol. 5, 1185–1191 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Loo, Y.-M. et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in nonhuman primates and has an extended half-life in humans. Sci. Transl Med. 14, eabl8124 (2022).

CAS 
PubMed 
Article 

Google Scholar 

Oganesyan, V., Gao, C., Shirinian, L., Wu, H. & Dall’Acqua, W. F. Structural characterization of a human Fc fragment engineered for lack of effector functions. Acta Crystallogr. Sect. D. 64, 700–704 (2008).

CAS 
Article 

Google Scholar 

Gupta, A. et al. Early treatment for COVID-19 with SARS-CoV-2 neutralizing antibody sotrovimab. N. Engl. J. Med. 385, 1941–1950 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Weitzenfeld, P., Bournazos, S. & Ravetch, J. V. Antibodies targeting sialyl Lewis A mediate tumor clearance through distinct effector pathways. J. Clin. Invest. 129, 3952–3962 (2019).

PubMed 
PubMed Central 
Article 

Google Scholar 

Grobben, M., Stuart, R. A. & van Gils, M. J. The potential of engineered antibodies for HIV-1 therapy and cure. Curr. Opin. Virol. 38, 70–80 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Gaudinski, M. R. et al. Safety and pharmacokinetics of the Fc-modified HIV-1 human monoclonal antibody VRC01LS: a phase 1 open-label clinical trial in healthy adults. PLoS Med. 15, e1002493 (2018).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Rudicell, R. S. et al. Enhanced potency of a broadly neutralizing HIV-1 antibody in vitro improves protection against lentiviral infection in vivo. J. Virol. 88, 12669–12682 (2014).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Julien, J.-P. et al. Broadly neutralizing antibody PGT121 allosterically modulates CD4 binding via recognition of the HIV-1 gp120 V3 base and multiple surrounding glycans. PLoS Pathog. 9, e1003342 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Dall’Acqua, W. F., Kiener, P. A. & Wu, H. Properties of human IgG1s engineered for enhanced binding to the neonatal Fc receptor (FcRn). J. Biol. Chem. 281, 23514–23524 (2006).

PubMed 
Article 
CAS 

Google Scholar 

Griffin, M. P. et al. Single-dose nirsevimab for prevention of RSV in preterm infants. N. Engl. J. Med. 383, 415–425 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Hammitt, L. L. et al. Nirsevimab for prevention of RSV in healthy late-preterm and term infants. N. Engl. J. Med. 386, 837–846 (2022).

CAS 
PubMed 
Article 

Google Scholar 

Domachowske, J. B. et al. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatr. Infect. Dis. J. 37, 886–892 (2018).

PubMed 
PubMed Central 
Article 

Google Scholar 

Labrijn, A. F., Janmaat, M. L., Reichert, J. M. & Parren, P. W. H. I. Bispecific antibodies: a mechanistic review of the pipeline. Nat. Rev. Drug Discov. 18, 585–608 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Wec, A. Z. et al. A “Trojan horse” bispecific-antibody strategy for broad protection against ebolaviruses. Science 354, 350–354 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Bournazos, S., Gazumyan, A., Seaman, M. S., Nussenzweig, M. C. & Ravetch, J. V. Bispecific anti-HIV-1 antibodies with enhanced breadth and potency. Cell 165, 1609–1620 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Xu, L. et al. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 358, 85–90 (2017).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

CAS 
PubMed 
Article 

Google Scholar 

Scully, M. et al. Caplacizumab treatment for acquired thrombotic thrombocytopenic purpura. N. Engl. J. Med. 380, 335–346 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Xu, J. et al. Nanobodies from camelid mice and llamas neutralize SARS-CoV-2 variants. Nature 595, 278–282 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Plückthun, A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55, 489–511 (2015).

PubMed 
Article 
CAS 

Google Scholar 

Rothenberger, S. et al. Ensovibep, a novel trispecific DARPin candidate that protects against SARS-CoV-2 variants. Preprint at bioRxiv https://doi.org/10.1101/2021.02.03.429164 (2022).

Walser, M. et al. Highly potent anti-SARS-CoV-2 multivalent DARPin therapeutic candidates. Preprint at bioRxiv https://doi.org/10.1101/2020.08.25.256339 (2021).

DARPins stack up as anti-COVID-19 agents. Nat. Biotechnol. 38, 1369–1369 (2020).

Su, S. et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses. Trends Microbiol. 24, 490–502 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

V’kovski, P., Kratzel, A., Steiner, S., Stalder, H. & Thiel, V. Coronavirus biology and replication: implications for SARS-CoV-2. Nat. Rev. Microbiol. 19, 155–170 (2021).

PubMed 
Article 
CAS 

Google Scholar 

Killerby, M. E. et al. Human coronavirus circulation in the United States 2014–2017. J. Clin. Virol. 101, 52–56 (2018).

PubMed 
PubMed Central 
Article 

Google Scholar 

Olsen, S. J. et al. Transmission of the severe acute respiratory syndrome on aircraft. N. Engl. J. Med. 349, 2416–2422 (2003).

CAS 
PubMed 
Article 

Google Scholar 

Yount, B. et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proc. Natl Acad. Sci. USA 100, 12995–13000 (2003).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Cauchemez, S. et al. Middle East respiratory syndrome coronavirus: quantification of the extent of the epidemic, surveillance biases, and transmissibility. Lancet Infect. Dis. 14, 50–56 (2014).

PubMed 
Article 

Google Scholar 

Graham, R. L., Donaldson, E. F. & Baric, R. S. A decade after SARS: strategies for controlling emerging coronaviruses. Nat. Rev. Microbiol. 11, 836–848 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Chan, J. F. et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 395, 514–523 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Coronavirus disease (COVID-19) pandemic. World Health Organization https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (2021).

Raj, V. S. et al. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495, 251–254 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Harrison, S. C. Viral membrane fusion. Virology 479-480, 498–507 (2015).

CAS 
PubMed 
Article 

Google Scholar 

Park, Y.-J. et al. Structures of MERS-CoV spike glycoprotein in complex with sialoside attachment receptors. Nat. Struct. Mol. Biol. 26, 1151–1157 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579, 270–273 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Shang, J. et al. Structural basis of receptor recognition by SARS-CoV-2. Nature 581, 221–224 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Cai, Y. et al. Distinct conformational states of SARS-CoV-2 spike protein. Science 369, 1586–1592 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Tripp, R. A. et al. Monoclonal antibodies to SARS-associated coronavirus (SARS-CoV): identification of neutralizing and antibodies reactive to S, N, M and E viral proteins. J. Virol. Meth. 128, 21–28 (2005).

CAS 
Article 

Google Scholar 

Jiang, L. et al. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci. Transl. Med. 6, 234ra259–234ra259 (2014).

Article 
CAS 

Google Scholar 

An EUA for sotrovimab for treatment of COVID-19. Med. Lett. Drugs Ther. 63, 97-xx98 (2021).

Google Scholar 

Baum, A. et al. REGN-COV2 antibodies prevent and treat SARS-CoV-2 infection in rhesus macaques and hamsters. Science 370, 1110–1115 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Baum, A. et al. Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies. Science 369, 1014–1018 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Hansen, J. et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science 369, 1010–1014 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Deeks, E. D. Casirivimab/Imdevimab: first approval. Drugs 81, 2047–2055 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Jones, B. E. et al. The neutralizing antibody, LY-CoV555, protects against SARS-CoV-2 infection in nonhuman primates. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abf1906 (2021).

Shi, R. et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature 584, 120–124 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Dougan, M. et al. Bamlanivimab plus etesevimab in mild or moderate COVID-19. N. Engl. J. Med. 385, 1382–1392 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Gottlieb, R. L. et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19: a randomized clinical trial. JAMA 325, 632–644 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Dong, J. et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktail. Nat. Microbiol. 6, 1233–1244 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Zost, S. J. et al. Potently neutralizing and protective human antibodies against SARS-CoV-2. Nature 584, 443–449 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Tixagevimab and cilgavimab (Evusheld) for pre-exposure prophylaxis of COVID-19. JAMA 327, 384–385 (2022).

Article 

Google Scholar 

Li, T. et al. Cross-neutralizing antibodies bind a SARS-CoV-2 cryptic site and resist circulating variants. Nat. Commun. 12, 5652 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ryu, D.-K. et al. Therapeutic effect of CT-P59 against SARS-CoV-2 South African variant. Biochem. Biophys. Res. Commun. 566, 135–140 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. Cell Rep. 39, 110812 (2022).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Hoffmann, M. et al. The Omicron variant is highly resistant against antibody-mediated neutralization: implications for control of the COVID-19 pandemic. Cell 185, 447–456.e11 (2022).

CAS 
PubMed 
Article 

Google Scholar 

Fenwick, C. et al. SARS-CoV-2 Omicron potently neutralized by a novel antibody with unique spike binding properties. Preprint at bioRxiv https://doi.org/10.1101/2022.03.18.484873 (2022).

Du, S. et al. Structurally resolved SARS-CoV-2 antibody shows high efficacy in severely infected hamsters and provides a potent cocktail pairing strategy. Cell 183, 1013–1023.e13 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Tortorici, M. A. et al. Ultrapotent human antibodies protect against SARS-CoV-2 challenge via multiple mechanisms. Science 370, 950–957 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Brouwer, P. J. M. et al. Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science 369, 643–650 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Barnes, C. O. et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature 588, 682–687 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Fenwick, C. et al. A highly potent antibody effective against SARS-CoV-2 variants of concern. Cell Rep. 37, 109814 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wu, N. C. et al. An alternative binding mode of IGHV3-53 antibodies to the SARS-CoV-2 receptor binding domain. Cell Rep. 33, 108274 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Liu, L. et al. Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike. Nature 584, 450–456 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Kreye, J. et al. A therapeutic non-self-reactive SARS-CoV-2 antibody protects from lung pathology in a COVID-19 hamster model. Cell 183, 1058–1069.e19 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ju, B. et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature 584, 115–119 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Tian, X. et al. Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg. Microbes Infect. 9, 382–385 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Zhou, D. et al. Structural basis for the neutralization of SARS-CoV-2 by an antibody from a convalescent patient. Nat. Struct. Mol. Biol. 27, 950–958 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Pinto, D. et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature 583, 290–295 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Cerutti, G. et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike N-terminal domain target a single supersite. Cell Host Microbe 29, 819–833.e7 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

McCallum, M. et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Cell 184, 2332–2347.e16 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Suryadevara, N. et al. Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein. Cell 184, 2316–2331.e15 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Chi, X. et al. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science 369, 650–655 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Shrock, E. et al. Viral epitope profiling of COVID-19 patients reveals cross-reactivity and correlates of severity. Science https://doi.org/10.1126/science.abd4250 (2020).

Pinto, D. et al. Broad betacoronavirus neutralization by a stem helix-specific human antibody. Science 373, 1109–1116 (2021).

CAS 
PubMed 
Article 

Google Scholar 

O’Brien, M. P. et al. Subcutaneous REGEN-COV antibody combination to prevent COVID-19. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2109682 (2021).

Arvin, A. M. et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature 584, 353–363 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Battles, M. B. & McLellan, J. S. Respiratory syncytial virus entry and how to block it. Nat. Rev. Microbiol. 17, 233–245 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Glezen, W. P., Taber, L. H., Frank, A. L. & Kasel, J. A. Risk of primary infection and reinfection with respiratory syncytial virus. Am. J. Dis. Child. 140, 543–546 (1986).

CAS 
PubMed 

Google Scholar 

Hall, C. B., Walsh, E. E., Long, C. E. & Schnabel, K. C. Immunity to and frequency of reinfection with respiratory syncytial virus. J. Infect. Dis. 163, 693–698 (1991).

CAS 
PubMed 
Article 

Google Scholar 

American Academy of Pediatrics Committee on Infectious Diseases, Committee on Fetus and Newborn. Respiratory syncytial virus immune globulin intravenous: indications for use. Pediatrics 99, 645–650 (1997).

Groothuis, J. R. et al. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. The Respiratory Syncytial Virus Immune Globulin Study Group. N. Engl. J. Med. 329, 1524–1530 (1993).

CAS 
PubMed 
Article 

Google Scholar 

Group, T. I.-R. S. Palivizumab, a humanized respiratory syncytial virus monoclonal antibody, reduces hospitalization from respiratory syncytial virus infection in high-risk infants. Pediatrics 102, 531–537 (1998).

Article 

Google Scholar 

Magro, M. et al. Neutralizing antibodies against the preactive form of respiratory syncytial virus fusion protein offer unique possibilities for clinical intervention. Proc. Natl Acad. Sci. USA 109, 3089–3094 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ngwuta, J. O. et al. Prefusion F-specific antibodies determine the magnitude of RSV neutralizing activity in human sera. Sci. Transl. Med. 7, 309ra162 (2015).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Huang, K., Incognito, L., Cheng, X., Ulbrandt, N. D. & Wu, H. Respiratory syncytial virus-neutralizing monoclonal antibodies motavizumab and palivizumab inhibit fusion. J. Virol. 84, 8132–8140 (2010).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

McLellan, J. S. et al. Structural basis of respiratory syncytial virus neutralization by motavizumab. Nat. Struct. Mol. Biol. 17, 248–250 (2010).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Carbonell-Estrany, X. et al. Motavizumab for prophylaxis of respiratory syncytial virus in high-risk children: a noninferiority trial. Pediatrics 125, e35–e51 (2010).

PubMed 
Article 

Google Scholar 

Kwakkenbos, M. J. et al. Generation of stable monoclonal antibody-producing B cell receptor-positive human memory B cells by genetic programming. Nat. Med. 16, 123–128 (2010).

CAS 
PubMed 
Article 

Google Scholar 

McLellan, J. S. et al. Structure-based design of a fusion glycoprotein vaccine for respiratory syncytial virus. Science 342, 592–598 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Tian, D. et al. Structural basis of respiratory syncytial virus subtype-dependent neutralization by an antibody targeting the fusion glycoprotein. Nat. Commun. 8, 1877 (2017).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Sivapalasingam, S. et al. Phase 1 study evaluating safety, tolerability, pharmacokinetics and immunogenicity of REGN2222 in healthy adults: a new human monoclonal RSV-F antibody for RSV prevention. Open Forum Infect. Dis. https://doi.org/10.1093/ofid/ofv133.628 (2015).

Simões, E. A. F. et al. Suptavumab for the prevention of medically attended respiratory syncytial virus infection in preterm infants. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa951 (2020).

Malvy, D., McElroy, A. K., de Clerck, H., Günther, S. & van Griensven, J. Ebola virus disease. Lancet 393, 936–948 (2019).

PubMed 
Article 

Google Scholar 

Lee, J. E. et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454, 177–182 (2008).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Côté, M. et al. Small molecule inhibitors reveal Niemann-Pick C1 is essential for Ebola virus infection. Nature 477, 344–348 (2011).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Olal, D. et al. Structure of an antibody in complex with its mucin domain linear epitope that is protective against Ebola virus. J. Virol. 86, 2809–2816 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wilson, J. A. et al. Epitopes involved in antibody-mediated protection from Ebola virus. Science 287, 1664–1666 (2000).

CAS 
PubMed 
Article 

Google Scholar 

Qiu, X. et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 514, 47–53 (2014).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Corti, D. et al. Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351, 1339–1342 (2016).

CAS 
PubMed 
Article 

Google Scholar 

Misasi, J. et al. Structural and molecular basis for Ebola virus neutralization by protective human antibodies. Science 351, 1343–1346 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Pascal, K. E. et al. Development of clinical-stage human monoclonal antibodies that treat advanced Ebola virus disease in nonhuman primates. J. Infect. Dis. 218, S612–s626 (2018).

PubMed 
Article 

Google Scholar 

Mulangu, S. et al. A randomized, controlled trial of Ebola virus disease therapeutics. N. Engl. J. Med. 381, 2293–2303 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Markham, A. REGN-EB3: first approval. Drugs 81, 175–178 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lee, A. Ansuvimab: first approval. Drugs 81, 595–598 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Griffiths, P. & Reeves, M. Pathogenesis of human cytomegalovirus in the immunocompromised host. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-021-00582-z (2021).

Schleiss, M. R. Congenital cytomegalovirus: impact on child health. Contemp. Pediatr. 35, 16–24 (2018).

PubMed 
PubMed Central 

Google Scholar 

Ciferri, C. et al. Structural and biochemical studies of HCMV gH/gL/gO and Pentamer reveal mutually exclusive cell entry complexes. Proc. Natl Acad. Sci. USA 112, 1767–1772 (2015).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Foglierini, M., Marcandalli, J. & Perez, L. HCMV envelope glycoprotein diversity demystified. Front. Microbiol. 10, 1005 (2019).

PubMed 
PubMed Central 
Article 

Google Scholar 

Kabanova, A. et al. Platelet-derived growth factor-α receptor is the cellular receptor for human cytomegalovirus gHgLgO trimer. Nat. Microbiol. 1, 16082 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Kschonsak, M. et al. Structures of HCMV Trimer reveal the basis for receptor recognition and cell entry. Cell 184, 1232–1244.e16 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Martinez-Martin, N. et al. An unbiased screen for human cytomegalovirus identifies Neuropilin-2 as a central viral receptor. Cell https://doi.org/10.1016/j.cell.2018.06.028 (2018).

Kschonsak, M. et al. Structural basis for HCMV Pentamer receptor recognition and antibody neutralization. Sci. Adv. 8, eabm2536 (2022).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wrapp, D. et al. Structural basis for HCMV Pentamer recognition by neuropilin 2 and neutralizing antibodies. Sci. Adv. 8, eabm2546 (2022).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wille, P. T., Wisner, T. W., Ryckman, B. & Johnson, D. C. Human cytomegalovirus (HCMV) glycoprotein gB promotes virus entry in trans acting as the viral fusion protein rather than as a receptor-binding protein. MBio 4, e00332–00313 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Burke, H. G. & Heldwein, E. E. Crystal structure of the human cytomegalovirus glycoprotein B. PLoS Pathog. 11, e1005227 (2015).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Chandramouli, S. et al. Structure of HCMV glycoprotein B in the postfusion conformation bound to a neutralizing human antibody. Nat. Commun. 6, 8176 (2015).

CAS 
PubMed 
Article 

Google Scholar 

Perotti, M., Marcandalli, J., Demurtas, D., Sallusto, F. & Perez, L. Rationally designed human cytomegalovirus gB nanoparticle vaccine with improved immunogenicity. PLoS Pathog. 16, e1009169 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Gabanti, E. et al. Early T cell reconstitution and cytokine profile may help to guide a personalized management of human cytomegalovirus infection after allogeneic hematopoietic stem cell transplantation. J. Clin. Virol. 135, 104734 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Baldanti, F., Lilleri, D. & Gerna, G. Monitoring human cytomegalovirus infection in transplant recipients. J. Clin. Virol. 41, 237–241 (2008).

PubMed 
Article 

Google Scholar 

Fouts, A. E. et al. Mechanism for neutralizing activity by the anti-CMV gH/gL monoclonal antibody MSL-109. Proc. Natl Acad. Sci. USA 111, 8209–8214 (2014).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Jabs, D. A. et al. HIV and cytomegalovirus viral load and clinical outcomes in AIDS and cytomegalovirus retinitis patients: monoclonal antibody cytomegalovirus retinitis trial. AIDS 16, 877–887 (2002).

PubMed 
Article 

Google Scholar 

Ishida, J. H. et al. Phase 1 randomized, double-blind, placebo-controlled study of RG7667, an anticytomegalovirus combination monoclonal antibody therapy, in healthy adults. Antimicrob. Agents Chemother. 59, 4919–4929 (2015).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ishida, J. H. et al. Phase 2 randomized, double-blind, placebo-controlled trial of RG7667, a combination monoclonal antibody, for prevention of cytomegalovirus infection in high-risk kidney transplant recipients. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.01794-16 (2017).

Patel, H. D. et al. In vitro characterization of human cytomegalovirus-targeting therapeutic monoclonal antibodies LJP538 and LJP539. Antimicrob. Agents Chemother. 60, 4961–4971 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Maertens, J. et al. Phase 2 study of anti-human cytomegalovirus monoclonal antibodies for prophylaxis in hematopoietic cell transplantation. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.02467-19 (2020).

Nelson, C. S. et al. Preexisting antibodies can protect against congenital cytomegalovirus infection in monkeys. JCI Insight https://doi.org/10.1172/jci.insight.94002 (2017).

Revello, M. G. et al. A randomized trial of hyperimmune globulin to prevent congenital cytomegalovirus. N. Engl. J. Med. 370, 1316–1326 (2014).

CAS 
PubMed 
Article 

Google Scholar 

Spinillo, A. & Gerna, G. Hyperimmune globulin to prevent congenital CMV infection. N. Engl. J. Med. 370, 2544–2545 (2014).

CAS 
PubMed 

Google Scholar 

Yamayoshi, S. & Kawaoka, Y. Current and future influenza vaccines. Nat. Med. 25, 212–220 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Jones, J. E. et al. Parallel evolution between genomic segments of seasonal human influenza viruses reveals RNA-RNA relationships. eLife https://doi.org/10.7554/eLife.66525 (2021).

Zost, S. J., Wu, N. C., Hensley, S. E. & Wilson, I. A. Immunodominance and antigenic variation of influenza virus hemagglutinin: implications for design of universal vaccine immunogens. J. Infect. Dis. 219, S38–S45 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Virk, R. K. et al. Divergent evolutionary trajectories of influenza B viruses underlie their contemporaneous epidemic activity. Proc. Natl Acad. Sci. USA 117, 619–628 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Wang, C.-C. et al. Glycans on influenza hemagglutinin affect receptor binding and immune response. Proc. Natl Acad. Sci. USA 106, 18137–18142 (2009).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wu, N. C. & Wilson, I. A. Structural insights into the design of novel anti-influenza therapies. Nat. Struct. Mol. Biol. 25, 115–121 (2018).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Krammer, F. The human antibody response to influenza A virus infection and vaccination. Nat. Rev. Immunol. 19, 383–397 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Tzarum, N. et al. Structure and receptor binding of the hemagglutinin from a human H6N1 influenza virus. Cell Host Microbe 17, 369–376 (2015).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Cheung, C. S. et al. Identification and structure of a multidonor class of head-directed influenza-neutralizing antibodies reveal the mechanism for its recurrent elicitation. Cell Rep. 32, 108088 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Ekiert, D. C. et al. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489, 526–532 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lee, P. S. et al. Heterosubtypic antibody recognition of the influenza virus hemagglutinin receptor binding site enhanced by avidity. Proc. Natl Acad. Sci. USA 109, 17040–17045 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lee, P. S. et al. Receptor mimicry by antibody F045–092 facilitates universal binding to the H3 subtype of influenza virus. Nat. Commun. 5, 3614 (2014).

PubMed 
Article 
CAS 

Google Scholar 

Bajic, G. et al. Influenza antigen engineering focuses immune responses to a subdominant but broadly protective viral epitope. Cell Host Microbe 25, 827–835.e6 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Bangaru, S. et al. A site of vulnerability on the influenza virus hemagglutinin head domain trimer interface. Cell 177, 1136–1152.e18 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Yassine, H. M. et al. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 21, 1065–1070 (2015).

CAS 
PubMed 
Article 

Google Scholar 

Wei, C. J. et al. Next-generation influenza vaccines: opportunities and challenges. Nat. Rev. Drug Discov. 19, 239–252 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Harshbarger, W. D. et al. Unique structural solution from a V(H)3-30 antibody targeting the hemagglutinin stem of influenza A viruses. Nat. Commun. 12, 559 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

He, W. et al. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus. Proc. Natl Acad. Sci. USA 113, 11931–11936 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Sui, J. et al. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat. Struct. Mol. Biol. 16, 265–273 (2009).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Throsby, M. et al. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS ONE 3, e3942 (2008).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Ekiert, D. C. et al. A highly conserved neutralizing epitope on group 2 influenza A viruses. Science 333, 843–850 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Friesen, R. H. et al. A common solution to group 2 influenza virus neutralization. Proc. Natl Acad. Sci. USA 111, 445–450 (2014).

CAS 
PubMed 
Article 

Google Scholar 

Giang, E. et al. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc. Natl Acad. Sci. USA 109, 6205–6210 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Corti, D. et al. A neutralizing antibody selected from plasma cells that binds to group 1 and group 2 influenza A hemagglutinins. Science 333, 850–856 (2011).

CAS 
PubMed 
Article 

Google Scholar 

Dreyfus, C. et al. Highly conserved protective epitopes on influenza B viruses. Science 337, 1343–1348 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Nakamura, G. et al. An in vivo human-plasmablast enrichment technique allows rapid identification of therapeutic influenza A antibodies. Cell Host Microbe 14, 93–103 (2013).

CAS 
PubMed 
Article 

Google Scholar 

Kallewaard, N. L. et al. Structure and function analysis of an antibody recognizing all influenza A subtypes. Cell 166, 596–608 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Impagliazzo, A. et al. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 349, 1301–1306 (2015).

CAS 
PubMed 
Article 

Google Scholar 

Ali, S. O. et al. Evaluation of MEDI8852, an anti-influenza A monoclonal antibody, in treating acute uncomplicated influenza. Antimicrob. Agents Chemother. https://doi.org/10.1128/aac.00694-18 (2018).

Stern, A. M. & Markel, H. The history of vaccines and immunization: familiar patterns, new challenges. Health Aff. 24, 611–621 (2005).

Article 

Google Scholar 

Burton, D. R. What are the most powerful immunogen design vaccine strategies? Reverse vaccinology 2.0 shows great promise. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a030262 (2017).

Plotkin, S. A. Correlates of protection induced by vaccination. Clin. Vaccin. Immunol. 17, 1055–1065 (2010).

CAS 
Article 

Google Scholar 

Malito, E., Carfi, A. & Bottomley, M. J. Protein crystallography in vaccine research and development. Int. J. Mol. Sci. 16, 13106–13140 (2015).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lanzavecchia, A., Frühwirth, A., Perez, L. & Corti, D. Antibody-guided vaccine design: identification of protective epitopes. Curr. Opin. Immunol. 41, 62–67 (2016).

CAS 
PubMed 
Article 

Google Scholar 

Wilson, P. C. & Andrews, S. F. Tools to therapeutically harness the human antibody response. Nat. Rev. Immunol. 12, 709–719 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Pantophlet, R. & Burton, D. R. Immunofocusing: antigen engineering to promote the induction of HIV-neutralizing antibodies. Trends Mol. Med. 9, 468–473 (2003).

CAS 
PubMed 
Article 

Google Scholar 

Sesterhenn, F., Bonet, J. & Correia, B. E. Structure-based immunogen design-leading the way to the new age of precision vaccines. Curr. Opin. Struct. Biol. 51, 163–169 (2018).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Gilman, M. S. et al. Rapid profiling of RSV antibody repertoires from the memory B cells of naturally infected adult donors. Sci. Immunol. https://doi.org/10.1126/sciimmunol.aaj1879 (2016).

Boyington, J. C. et al. Structure-based design of head-only fusion glycoprotein immunogens for respiratory syncytial virus. PLOS ONE 11, e0159709 (2016).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Krarup, A. et al. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism. Nat. Commun. 6, 8143 (2015).

PubMed 
Article 

Google Scholar 

Joyce, M. G. et al. Iterative structure-based improvement of a fusion-glycoprotein vaccine against RSV. Nat. Struct. Mol. Biol. 23, 811–820 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Liljeroos, L., Malito, E., Ferlenghi, I. & Bottomley, M. J. Structural and computational biology in the design of immunogenic vaccine antigens. J. Immunol. Res. 2015, 156241 (2015).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Correia, B. E. et al. Computational design of epitope-scaffolds allows induction of antibodies specific for a poorly immunogenic HIV vaccine epitope. Structure 18, 1116–1126 (2010).

CAS 
PubMed 
Article 

Google Scholar 

Ofek, G. et al. Elicitation of structure-specific antibodies by epitope scaffolds. Proc. Natl Acad. Sci. USA 107, 17880–17887 (2010).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Guenaga, J. et al. Heterologous epitope-scaffold prime:boosting immuno-focuses B cell responses to the HIV-1 gp41 2F5 neutralization determinant. PLoS ONE 6, e16074 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Azoitei, M. L. et al. Computational design of high-affinity epitope scaffolds by backbone grafting of a linear epitope. J. Mol. Biol. 415, 175–192 (2012).

CAS 
PubMed 
Article 

Google Scholar 

Kuhlman, B. & Bradley, P. Advances in protein structure prediction and design. Nat. Rev. Mol. Cell Biol. 20, 681–697 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

McLellan, J. S. et al. Design and characterization of epitope-scaffold immunogens that present the motavizumab epitope from respiratory syncytial virus. J. Mol. Biol. 409, 853–866 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Correia, B. E. et al. Proof of principle for epitope-focused vaccine design. Nature 507, 201–206 (2014).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Sesterhenn, F. et al. Boosting subdominant neutralizing antibody responses with a computationally designed epitope-focused immunogen. PLoS Biol. 17, e3000164 (2019).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Sesterhenn, F. et al. De novo protein design enables the precise induction of RSV-neutralizing antibodies. Science https://doi.org/10.1126/science.aay5051 (2020).

Azoitei, M. L. et al. Computation-guided backbone grafting of a discontinuous motif onto a protein scaffold. Science 334, 373–376 (2011).

CAS 
PubMed 
Article 

Google Scholar 

Rubinstein, N. D. et al. Computational characterization of B-cell epitopes. Mol. Immunol. 45, 3477–3489 (2008).

CAS 
PubMed 
Article 

Google Scholar 

Jin, L., Fendly, B. M. & Wells, J. A. High resolution functional analysis of antibody-antigen interactions. J. Mol. Biol. 226, 851–865 (1992).

CAS 
PubMed 
Article 

Google Scholar 

Marcandalli, J. et al. Induction of potent neutralizing antibody responses by a designed protein nanoparticle vaccine for respiratory syncytial virus. Cell 176, 1420–1431.e17 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Brouwer, P. J. M. et al. Two-component spike nanoparticle vaccine protects macaques from SARS-CoV-2 infection. Cell 184, 1188–1200.e19 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Boyoglu-Barnum, S. et al. Quadrivalent influenza nanoparticle vaccines induce broad protection. Nature 592, 623–628 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Maruyama, T. et al. Recombinant human monoclonal antibodies to Ebola virus. J. Infect. Dis. 179, S235–S239 (1999).

CAS 
PubMed 
Article 

Google Scholar 

Pettitt, J. et al. Therapeutic intervention of Ebola virus infection in rhesus macaques with the MB-003 monoclonal antibody cocktail. Sci. Transl. Med. 5, 199ra113–199ra113 (2013).

PubMed 
Article 

Google Scholar 

Cagigi, A. et al. Vaccine generation of protective ebola antibodies and identification of conserved B-cell signatures. J. Infect. Dis. 218, S528–s536 (2018).

PubMed 
PubMed Central 
Article 

Google Scholar 

Rijal, P. et al. Therapeutic monoclonal antibodies for Ebola virus infection derived from vaccinated humans. Cell Rep. 27, 172–186.e7 (2019).

CAS 
PubMed 
Article 

Google Scholar 

He, L. et al. Single-component multilayered self-assembling nanoparticles presenting rationally designed glycoprotein trimers as Ebola virus vaccines. Nat. Commun. 12, 2633 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Jones, S. M. et al. Live attenuated recombinant vaccine protects nonhuman primates against Ebola and Marburg viruses. Nat. Med. 11, 786–790 (2005).

CAS 
PubMed 
Article 

Google Scholar 

Marzi, A. et al. Antibodies are necessary for rVSV/ZEBOV-GP-mediated protection against lethal Ebola virus challenge in nonhuman primates. Proc. Natl Acad. Sci. USA 110, 1893–1898 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 389, 505–518 (2017).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Mutua, G. et al. Safety and immunogenicity of a 2-dose heterologous vaccine regimen with Ad26.ZEBOV and MVA-BN-Filo Ebola vaccines: 12-month data from a phase 1 randomized clinical trial in Nairobi, Kenya. J. Infect. Dis. 220, 57–67 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ledgerwood, J. E. et al. Chimpanzee adenovirus vector Ebola vaccine. N. Engl. J. Med. 376, 928–938 (2017).

CAS 
PubMed 
Article 

Google Scholar 

Thi, E. P. et al. Lipid nanoparticle siRNA treatment of Ebola-virus-Makona-infected nonhuman primates. Nature 521, 362–365 (2015).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Elek, S. & Stern, H. Development of a vaccine against mental retardation caused by cytomegalovirus infection in utero. Lancet 303, 1–5 (1974).

Article 

Google Scholar 

Plotkin, S. A., Furukawa, T., Zygraich, N. & Huygelen, C. Candidate cytomegalovirus strain for human vaccination. Infect. Immun. 12, 521–527 (1975).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Plotkin, S. A. et al. Multicenter trial of Towne strain attenuated virus vaccine in seronegative renal transplant recipients. Transplantation 58, 1176–1178 (1994).

CAS 
PubMed 

Google Scholar 

Nelson Cody, S. et al. HCMV glycoprotein B subunit vaccine efficacy mediated by nonneutralizing antibody effector functions. Proc. Natl Acad. Sci. USA 115, 6267–6272 (2018).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Pass, R. F. et al. Vaccine prevention of maternal cytomegalovirus infection. N. Engl. J. Med. 360, 1191–1199 (2009).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Griffiths, P. D. et al. Cytomegalovirus glycoprotein-B vaccine with MF59 adjuvant in transplant recipients: a phase 2 randomised placebo-controlled trial. Lancet 377, 1256–1263 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Liu, Y. et al. Prefusion structure of human cytomegalovirus glycoprotein B and structural basis for membrane fusion. Sci. Adv. 7, eabf3178 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wang, D. & Shenk, T. Human cytomegalovirus virion protein complex required for epithelial and endothelial cell tropism. Proc. Natl Acad. Sci. USA 102, 18153–18158 (2005).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lilleri, D. et al. Human cytomegalovirus (HCMV)-specific T cell but not neutralizing or IgG binding antibody responses to glycoprotein complexes gB, gHgLgO, and pUL128L correlate with protection against high HCMV viral load reactivation in solid-organ transplant recipients. J. Med. Virol. 90, 1620–1628 (2018).

CAS 
PubMed 
Article 

Google Scholar 

Hai, R. et al. Influenza viruses expressing chimeric hemagglutinins: globular head and stalk domains derived from different subtypes. J. Virol. 86, 5774–5781 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Krammer, F., Pica, N., Hai, R., Margine, I. & Palese, P. Chimeric hemagglutinin influenza virus vaccine constructs elicit broadly protective stalk-specific antibodies. J. Virol. 87, 6542–6550 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Margine, I. et al. Hemagglutinin stalk-based universal vaccine constructs protect against group 2 influenza A viruses. J. Virol. 87, 10435–10446 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Krammer, F. et al. Assessment of influenza virus hemagglutinin stalk-based immunity in ferrets. J. Virol. 88, 3432–3442 (2014).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Nachbagauer, R. et al. Hemagglutinin stalk immunity reduces influenza virus replication and transmission in ferrets. J. Virol. 90, 3268–3273 (2015).

PubMed 
Article 
CAS 

Google Scholar 

Nachbagauer, R. et al. A chimeric hemagglutinin-based universal influenza virus vaccine approach induces broad and long-lasting immunity in a randomized, placebo-controlled phase I trial. Nat. Med. 27, 106–114 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Kanekiyo, M. et al. Mosaic nanoparticle display of diverse influenza virus hemagglutinins elicits broad B cell responses. Nat. Immunol. 20, 362–372 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lu, Y., Welsh, J. P. & Swartz, J. R. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc. Natl Acad. Sci. USA 111, 125–130 (2014).

CAS 
PubMed 
Article 

Google Scholar 

Bommakanti, G. et al. Design of an HA2-based Escherichia coli expressed influenza immunogen that protects mice from pathogenic challenge. Proc. Natl Acad. Sci. USA 107, 13701–13706 (2010).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Corbett, K. S. et al. Design of nanoparticulate group 2 influenza virus hemagglutinin stem antigens that activate unmutated ancestor B cell receptors of broadly neutralizing antibody lineages. mBio https://doi.org/10.1128/mBio.02810-18 (2019).

Darricarrère, N. et al. Broad neutralization of H1 and H3 viruses by adjuvanted influenza HA stem vaccines in nonhuman primates. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abe5449 (2021).

van der Lubbe, J. E. M. et al. Mini-hemagglutinin vaccination induces cross-reactive antibodies in pre-exposed NHP that protect mice against lethal influenza challenge. NPJ Vaccin. 3, 25 (2018).

Article 
CAS 

Google Scholar 

Andrews, S. F. et al. A single residue in influenza virus H2 hemagglutinin enhances the breadth of the B cell response elicited by H2 vaccination. Nat. Med. 28, 373–382 (2022).

CAS 
PubMed 
Article 

Google Scholar 

Houser, K. V. et al. Safety and immunogenicity of a ferritin nanoparticle H2 influenza vaccine in healthy adults: a phase 1 trial. Nat. Med. 28, 383–391 (2022).

CAS 
PubMed 
Article 

Google Scholar 

Tseng, Y. C. et al. Egg-based influenza split virus vaccine with monoglycosylation induces cross-strain protection against influenza virus infections. Proc. Natl Acad. Sci. USA 116, 4200–4205 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Weidenbacher, P. A. & Kim, P. S. Protect, modify, deprotect (PMD): a strategy for creating vaccines to elicit antibodies targeting a specific epitope. Proc. Natl Acad. Sci. USA 116, 9947–9952 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Eggink, D., Goff, P. H. & Palese, P. Guiding the immune response against influenza virus hemagglutinin toward the conserved stalk domain by hyperglycosylation of the globular head domain. J. Virol. 88, 699–704 (2014).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Kirchdoerfer, R. N. et al. Pre-fusion structure of a human coronavirus spike protein. Nature 531, 118–121 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Pallesen, J. et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc. Natl Acad. Sci. USA 114, E7348–E7357 (2017).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Walls, A. C. et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 531, 114–117 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Sadarangani, M., Marchant, A. & Kollmann, T. R. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat. Rev. Immunol. 21, 475–484 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Amanat, F. et al. Introduction of two prolines and removal of the polybasic cleavage site lead to higher efficacy of a recombinant spike-based SARS-CoV-2 vaccine in the mouse model. mBio 12, e02648–02620 (2021).

CAS 
PubMed 
PubMed Central 

Google Scholar 

Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Walls, A. C. et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell 181, 281–292.e286 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Haynes, B. F., Burton, D. R. & Mascola, J. R. Multiple roles for HIV broadly neutralizing antibodies. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.aaz2686 (2019).

Sok, D. & Burton, D. R. Recent progress in broadly neutralizing antibodies to HIV. Nat. Immunol. 19, 1179–1188 (2018).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Caskey, M., Klein, F. & Nussenzweig, M. C. Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic. Nat. Med. 25, 547–553 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ferrari, G. et al. Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection. Nat. Rev. Drug Discov. 15, 823–834 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Derking, R. & Sanders, R. W. Structure-guided envelope trimer design in HIV-1 vaccine development: a narrative review. J. Int. AIDS Soc. 24, e25797 (2021).

PubMed 
PubMed Central 
Article 

Google Scholar 

McGuire, A. T. Targeting broadly neutralizing antibody precursors: a naïve approach to vaccine design. Curr. Opin. HIV AIDS 14, 294–301 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Venkatesen, P. Preliminary phase 1 results from an HIV vaccine candidate trial. Lancet Microbe 2, E95 (2021).

Article 

Google Scholar 

Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. Science 351, 1458–1463 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Sok, D. et al. Priming HIV-1 broadly neutralizing antibody precursors in human Ig loci transgenic mice. Science 353, 1557–1560 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Crowe, J. E. Jr Human antibodies for viral infections. Annu. Rev. Immunol. https://doi.org/10.1146/annurev-immunol-042718-041309 (2022).

Vellas, C. et al. Influence of treatment with neutralizing monoclonal antibodies on the SARS-CoV-2 nasopharyngeal load and quasispecies. Clin. Microbiol. Infect. 28, 139.e135–139.e8 (2022).

Article 
CAS 

Google Scholar 

Rockett, R. et al. Resistance mutations in SARS-CoV-2 Delta variant after sotrovimab use. N. Engl. J. Med. https://doi.org/10.1056/NEJMc2120219 (2022).

Choi, B. et al. Persistence and evolution of SARS-CoV-2 in an immunocompromised host. N. Engl. J. Med. 383, 2291–2293 (2020).

PubMed 
Article 

Google Scholar 

Vajda, S., Porter, K. A. & Kozakov, D. Progress toward improved understanding of antibody maturation. Curr. Opin. Struct. Biol. 67, 226–231 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Nguyen, D. N. et al. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38, 44–49 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Bruel, T. et al. Serum neutralization of SARS-CoV-2 Omicron sublineages BA.1 and BA.2 in patients receiving monoclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-022-01792-5 (2022).

Liu, L. et al. Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2. Nature 602, 676–681 (2022).

CAS 
PubMed 
Article 

Google Scholar 

Iketani, S. et al. Antibody evasion properties of SARS-CoV-2 Omicron sublineages. Nature 604, 553–556 (2022).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

ACTIV-3/Therapeutics for Inpatients with COVID-19 (TICO) Study Group. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. Lancet Infect. Dis. 22, 622–635 (2022).

VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01678-y (2022).

Self, W. H. et al. Efficacy and safety of two neutralising monoclonal antibody therapies, sotrovimab and BRII-196 plus BRII-198, for adults hospitalised with COVID-19 (TICO): a randomised controlled trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(21)00751-9 (2021).

Sakharkar, M. et al. Prolonged evolution of the human B cell response to SARS-CoV-2 infection. Sci. Immunol. 6, eabg6916 (2021).

PubMed 
PubMed Central 
Article 

Google Scholar 

Schirrmann, T., Meyer, T., Schütte, M., Frenzel, A. & Hust, M. Phage display for the generation of antibodies for proteome research, diagnostics and therapy. Molecules 16, 412–426 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Zurawski, D. V. & McLendon, M. K. Monoclonal antibodies as an antibacterial approach against bacterial pathogens. Antibiotics https://doi.org/10.3390/antibiotics9040155 (2020).

Mohamed, N. et al. A high-affinity monoclonal antibody to anthrax protective antigen passively protects rabbits before and after aerosolized Bacillus anthracis spore challenge. Infect. Immun. 73, 795–802 (2005).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wilcox, M. H. et al. Bezlotoxumab for prevention of recurrent Clostridium difficile infection. N. Engl. J. Med. 376, 305–317 (2017).

CAS 
PubMed 
Article 

Google Scholar 

Source: www.nature.com