The use of viral vectors in vaccine development

Draper, S. J. & Heeney, J. L. Viruses as vaccine vectors for infectious diseases and cancer. Nat. Rev. Microbiol. 8, 62–73 (2010).

CAS 
PubMed 
Article 

Google Scholar 

Jackson, D. A., Symons, R. H. & Berg, P. Biochemical method for inserting new genetic information into DNA of Simian Virus 40: circular SV40 DNA molecules containing lambda phage genes and the galactose operon of Escherichia coli. Proc. Natl Acad. Sci. USA 69, 2904–2909 (1972).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Henao-Restrepo, A. M. et al. Efficacy and effectiveness of an rVSV-vectored vaccine in preventing Ebola virus disease: final results from the Guinea ring vaccination, open-label, cluster-randomised trial (Ebola Ça Suffit!). Lancet 389, 505–518 (2017).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Robert-Guroff, M. Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 18, 546–556 (2007).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Hassan, A. O. et al. An intranasal vaccine durably protects against SARS-CoV-2 variants in mice. Cell Rep. 36, 109452 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Liebowitz, D. et al. Efficacy, immunogenicity, and safety of an oral influenza vaccine: a placebo-controlled and active-controlled phase 2 human challenge study. Lancet Infect. Dis. 20, 435–444 (2020).

CAS 
PubMed 
Article 

Google Scholar 

de Gruijl, T. D. et al. Intradermal delivery of adenoviral type-35 vectors leads to high efficiency transduction of mature, CD8+ T cell-stimulating skin-emigrated dendritic cells. J. Immunol. 177, 2208–2215 (2006).

PubMed 
Article 

Google Scholar 

Xu, F. et al. Safety, mucosal and systemic immunopotency of an aerosolized adenovirus-vectored vaccine against SARS-CoV-2 in rhesus macaques. Emerg. Microbes Infect. 11, 438–441 (2022).

PubMed 
PubMed Central 

Google Scholar 

Davison, A. J., Benko, M. & Harrach, B. Genetic content and evolution of adenoviruses. J. Gen. Virol. 84, 2895–2908 (2003).

CAS 
PubMed 
Article 

Google Scholar 

Vemula, S. V. & Mittal, S. K. Production of adenovirus vectors and their use as a delivery system for influenza vaccines. Expert Opin. Biol. Ther. 10, 1469–1487 (2010).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Li, J. X. et al. Immunity duration of a recombinant adenovirus type-5 vector-based Ebola vaccine and a homologous prime-boost immunisation in healthy adults in China: final report of a randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Glob. Health 5, e324–e334 (2017).

PubMed 
Article 

Google Scholar 

Zhu, F.-C. et al. Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet 396, 479–488 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Hutnick, N. A. et al. Baseline Ad5 serostatus does not predict Ad5 HIV vaccine–induced expansion of adenovirus-specific CD4+ T cells. Nat. Med. 15, 876–878 (2009).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Gray, G., Buchbinder, S. & Duerr, A. Overview of STEP and Phambili trial results: two phase IIb test-of-concept studies investigating the efficacy of MRK adenovirus type 5 gag/pol/nef subtype B HIV vaccine. Curr. Opin. HIV AIDS 5, 357–361 (2010).

PubMed 
PubMed Central 
Article 

Google Scholar 

Fitzgerald, D. W. et al. An Ad5-vectored HIV-1 vaccine elicits cell-mediated immunity but does not affect disease progression in HIV-1-infected male subjects: results from a randomized placebo-controlled trial (the Step study). J. Infect. Dis. 203, 765–772 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Barouch, D. H. et al. International seroepidemiology of adenovirus serotypes 5, 26, 35, and 48 in pediatric and adult populations. Vaccine 29, 5203–5209 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Fausther-Bovendo, H. & Kobinger, G. P. Pre-existing immunity against Ad vectors: humoral, cellular, and innate response, what’s important. Hum. Vaccin Immunother. 10, 2875–2884 (2014).

PubMed 
PubMed Central 
Article 

Google Scholar 

Altfeld, M. & Goulder, P. J. The STEP study provides a hint that vaccine induction of the right CD8+ T cell responses can facilitate immune control of HIV. J. Infect. Dis. 203, 753–755 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Duerr, A. et al. Extended follow-up confirms early vaccine-enhanced risk of HIV acquisition and demonstrates waning effect over time among participants in a randomized trial of recombinant adenovirus HIV vaccine (Step Study). J. Infect. Dis. 206, 258–266 (2012).

PubMed 
PubMed Central 
Article 

Google Scholar 

Bradley, R. R., Lynch, D. M., Iampietro, M. J., Borducchi, E. N. & Barouch, D. H. Adenovirus serotype 5 neutralizing antibodies target both hexon and fiber following vaccination and natural infection. J. Virol. 86, 625–629 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Hammer, S. M. et al. Efficacy trial of a DNA/rAd5 HIV-1 preventive vaccine. N. Engl. J. Med. 369, 2083–2092 (2013).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Qin, K. et al. Elevated HIV infection of CD4 T cells in MRKAd5 vaccine recipients due to CD8 T cells targeting adapted epitopes. J. Virol. 95, e0016021 (2021).

PubMed 
Article 

Google Scholar 

Logunov, D. Y. et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 397, 671–681 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Wu, S. et al. Safety, tolerability, and immunogenicity of an aerosolised adenovirus type-5 vector-based COVID-19 vaccine (Ad5-nCoV) in adults: preliminary report of an open-label and randomised phase 1 clinical trial. Lancet Infect. Dis. 21, 1654–1664 (2021).

Tatsis, N. & Ertl, H. C. J. Adenoviruses as vaccine vectors. Mol. Ther. 10, 616–629 (2004).

CAS 
PubMed 
Article 

Google Scholar 

Stephenson, K. E. et al. First-in-human randomized controlled trial of an oral, replicating adenovirus 26 vector vaccine for HIV-1. PLoS ONE 13, e0205139 (2018).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Barouch, D. H. et al. Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19). Lancet 392, 232–243 (2018).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Sadoff, J. et al. Safety and efficacy of single-dose Ad26.COV2.S vaccine against Covid-19. N. Engl. J. Med. 384, 2187–2201 (2021).

CAS 
PubMed 
Article 

Google Scholar 

See, I. et al. US case reports of cerebral venous sinus thrombosis with thrombocytopenia after Ad26.COV2.S vaccination, March 2 to April 21, 2021. JAMA 325, 2448–2456 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Folegatti, P. M. et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 396, 467–478 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Zhou, D., Cun, A., Li, Y., Xiang, Z. & Ertl, H. C. J. A chimpanzee-origin adenovirus vector expressing the rabies virus glycoprotein as an oral vaccine against inhalation infection with rabies virus. Mol. Ther. 14, 662–672 (2006).

PubMed 
Article 
CAS 

Google Scholar 

Jia, W. et al. Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection. Emerg. Microbes Infect. 8, 760–772 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ramasamy, M. N. et al. Safety and immunogenicity of ChAdOx1 nCoV-19 vaccine administered in a prime-boost regimen in young and old adults (COV002): a single-blind, randomised, controlled, phase 2/3 trial. Lancet 396, 1979–1993 (2021).

PubMed 
Article 

Google Scholar 

Greinacher, A. et al. Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N. Engl. J. Med. 384, 2092–2101 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Schultz, N. H. et al. Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med. 384, 2124–2130 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Greinacher, A. et al. Insights in ChAdOx1 nCoV-19 vaccine-induced immune thrombotic thrombocytopenia. Blood 138, 2256–2268 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Baker, A. T. et al. ChAdOx1 interacts with CAR and PF4 with implications for thrombosis with thrombocytopenia syndrome. Sci. Adv. 7, eabl8213 (2021).

PubMed 
PubMed Central 
Article 

Google Scholar 

Zhan, W., Muhuri, M., Tai, P. W. L. & Gao, G. Vectored immunotherapeutics for infectious diseases: can rAAVs be the game changers for fighting transmissible pathogens. Front Immunol. 12, 673699 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Kimura, T. et al. Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci. Rep. 9, 13601 (2019).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Zhao, H. et al. Creation of a high-yield AAV vector production platform in suspension cells using a design-of-experiment approach. Mol. Ther. Methods Clin. Dev. 18, 312–320 (2020).

Cehajic-Kapetanovic, J. et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR. Nat. Med. 26, 354–359 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Dimopoulos, I. S. et al. Two-year results after AAV2-mediated gene therapy for choroideremia: the Alberta experience. Am. J. Ophthalmol. 193, 130–142 (2018).

PubMed 
Article 

Google Scholar 

Mendell, J. R. et al. Single-dose gene-replacement therapy for spinal muscular atrophy. N. Engl. J. Med. 377, 1713–1722 (2017).

CAS 
PubMed 
Article 

Google Scholar 

Kuck, D. et al. Intranasal vaccination with recombinant adeno-associated virus type 5 against human papillomavirus type 16 L1. J. Virol. 80, 2621–2630 (2006).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ploquin, A. et al. Protection against henipavirus infection by use of recombinant adeno-associated virus-vector vaccines. J. Infect. Dis. 207, 469–478 (2013).

CAS 
PubMed 
Article 

Google Scholar 

Nieto, K. & Salvetti, A. AAV vectors vaccines against infectious diseases. Front. Immunol. 5, 5 (2014).

Manning, W. C. et al. Genetic immunization with adeno-associated virus vectors expressing herpes simplex virus type 2 glycoproteins B and D. J. Virol. 71, 7960–7962 (1997).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Liu, D.-W. et al. Co-vaccination with adeno-associated virus vectors encoding human papillomavirus 16 L1 proteins and adenovirus encoding murine GM-CSF can elicit strong and prolonged neutralizing antibody. Int. J. Cancer 113, 93–100 (2005).

CAS 
PubMed 
Article 

Google Scholar 

Logan, G. J. et al. AAV vectors encoding malarial antigens stimulate antigen-specific immunity but do not protect from parasite infection. Vaccine 25, 1014–1022 (2007).

CAS 
PubMed 
Article 

Google Scholar 

Du, L. et al. Priming with rAAV encoding RBD of SARS-CoV S protein and boosting with RBD-specific peptides for T cell epitopes elevated humoral and cellular immune responses against SARS-CoV infection. Vaccine 26, 1644–1651 (2008).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Martinez-Navio, J. M. et al. Adeno-associated virus delivery of anti-HIV monoclonal antibodies can drive long-term virologic suppression. Immunity 50, 567–575 e565 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lewis, A. D., Chen, R., Montefiori, D. C., Johnson, P. R. & Clark, K. R. Generation of neutralizing activity against human immunodeficiency virus type 1 in serum by antibody gene transfer. J. Virol. 76, 8769–8775 (2002).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Johnson, P. R. et al. Vector-mediated gene transfer engenders long-lived neutralizing activity and protection against SIV infection in monkeys. Nat. Med 15, 901–906 (2009).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Liu, G. et al. Vesicular stomatitis virus: from agricultural pathogen to vaccine vector. Pathogens 10, 1092 (2021).

Acciani, M. D. et al. Ebola virus requires phosphatidylserine scrambling activity for efficient budding and optimal infectivity. J. Virol. 95, e0116521 (2021).

PubMed 
Article 

Google Scholar 

Ausubel, L. J. et al. Current good manufacturing practice production of an oncolytic recombinant vesicular stomatitis viral vector for cancer treatment. Hum. Gene Ther. 22, 489–497 (2011).

CAS 
PubMed 
Article 

Google Scholar 

Jones, S. M. et al. Assessment of a vesicular stomatitis virus-based vaccine by use of the mouse model of Ebola virus hemorrhagic fever. J. Infect. Dis. 196, S404–412 (2007).

CAS 
PubMed 
Article 

Google Scholar 

Qiu, X. et al. Mucosal immunization of cynomolgus macaques with the VSVDeltaG/ZEBOVGP vaccine stimulates strong ebola GP-specific immune responses. PLoS ONE 4, e5547 (2009).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Marzi, A. et al. Efficacy of vesicular stomatitis virus-ebola virus postexposure treatment in rhesus macaques infected with ebola virus makona. J. Infect. Dis. 214, S360–S366 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Regules, J. A. et al. A recombinant vesicular stomatitis virus ebola vaccine. N. Engl. J. Med 376, 330–341 (2017).

CAS 
PubMed 
Article 

Google Scholar 

Ollmann Saphire, E. A vaccine against ebola virus. Cell 181, 6 (2020).

CAS 
PubMed 
Article 

Google Scholar 

Suder, E., Furuyama, W., Feldmann, H., Marzi, A. & de Wit, E. The vesicular stomatitis virus-based Ebola virus vaccine: from concept to clinical trials. Hum. Vaccin Immunother. 14, 2107–2113 (2018).

PubMed 
PubMed Central 
Article 

Google Scholar 

Khurana, S. et al. Human antibody repertoire after VSV-Ebola vaccination identifies novel targets and virus-neutralizing IgM antibodies. Nat. Med 22, 1439–1447 (2016).

CAS 
PubMed 
Article 

Google Scholar 

Geisbert, T. W. et al. Recombinant vesicular stomatitis virus vector mediates postexposure protection against Sudan Ebola hemorrhagic fever in nonhuman primates. J. Virol. 82, 5664–5668 (2008).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Mire, C. E. et al. Vesicular stomatitis virus-based vaccines protect nonhuman primates against Bundibugyo ebolavirus. PLoS Negl. Trop. Dis. 7, e2600 (2013).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Kapadia, S. U. et al. Long-term protection from SARS coronavirus infection conferred by a single immunization with an attenuated VSV-based vaccine. Virology 340, 174–182 (2005).

CAS 
PubMed 
Article 

Google Scholar 

Yahalom-Ronen, Y. et al. A single dose of recombinant VSV-G-spike vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 11, 6402 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Emanuel, J. et al. A VSV-based Zika virus vaccine protects mice from lethal challenge. Sci. Rep. 8, 11043 (2018).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Powers, A. D., Drury, J. E., Hoehamer, C. F., Lockey, T. D. & Meagher, M. M. Lentiviral vector production from a stable packaging cell line using a packed bed bioreactor. Mol. Ther. Methods Clin. Dev. 19, 1–13 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Gaspar, H. B. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364, 2181–2187 (2004).

CAS 
PubMed 
Article 

Google Scholar 

Ku, M. W. et al. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe 29, 236–249 e236 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Blasi, M. et al. IDLV-HIV-1 Env vaccination in non-human primates induces affinity maturation of antigen-specific memory B cells. Commun. Biol. 1, 134 (2018).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Blasi, M. et al. Therapeutic vaccination with IDLV-SIV-Gag results in durable viremia control in chronically SHIV-infected macaques. npjVaccines 5, 36 (2020).

Negri, D. et al. Immunization with an SIV-based IDLV expressing HIV-1 Env 1086 Clade C elicits durable humoral and cellular responses in Rhesus Macaques. Mol. Ther. 24, 2021–2032 (2016).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Coutant, F. et al. A nonintegrative lentiviral vector-based vaccine provides long-term sterile protection against malaria. PLoS ONE 7, e48644 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ku, M. W. et al. A single dose of NILV-based vaccine provides rapid and durable protection against Zika Virus. Mol. Ther. 28, 1772–1782 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Gallinaro, A. et al. Integrase defective lentiviral vector as a vaccine platform for delivering influenza antigens. Front Immunol. 9, 171 (2018).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Gallinaro, A. et al. Development and preclinical evaluation of an integrase defective lentiviral vector vaccine expressing the HIVACAT T cell immunogen in mice. Mol. Ther. Methods Clin. Dev. 17, 418–428 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Blasi, M. et al. Immunogenicity, safety, and efficacy of sequential immunizations with an SIV-based IDLV expressing CH505 Envs. NPJ Vaccines 5, 107 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Lin, Y. Y. et al. Skeletal muscle is an antigen reservoir in integrase-defective lentiviral vector-induced long-term immunity. Mol. Ther. Methods Clin. Dev. 17, 532–544 (2020).

Mastrangelo, M. J., Eisenlohr, L. C., Gomella, L. & Lattime, E. C. Poxvirus vectors: orphaned and underappreciated. J. Clin. Invest 105, 1031–1034 (2000).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Conrad, S. J. & Liu, J. Poxviruses as gene therapy vectors: generating poxviral vectors expressing therapeutic transgenes. Methods Mol. Biol. 1937, 189–209 (2019).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Kallel, H. & Kamen, A. A. Large-scale adenovirus and poxvirus-vectored vaccine manufacturing to enable clinical trials. Biotechnol. J. 10, 741–747 (2015).

CAS 
PubMed 
Article 

Google Scholar 

Offerman, K. et al. Six host-range restricted poxviruses from three genera induce distinct gene expression profiles in an in vivo mouse model. BMC Genomics 16, 510 (2015).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Volz, A. & Sutter, G. Modified vaccinia virus Ankara: history, value in basic research, and current perspectives for vaccine development. Adv. Virus Res. 97, 187–243 (2017).

CAS 
PubMed 
Article 

Google Scholar 

Baden, L. R. et al. First-in-human randomized, controlled trial of mosaic HIV-1 immunogens delivered via a modified vaccinia Ankara vector. J. Infect. Dis. 218, 633–644 (2018).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Gómez, C. E. et al. Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1IIIB Gag-Pol-Nef proteins of clade B. Vaccine 25, 2863–2885 (2007).

PubMed 
Article 
CAS 

Google Scholar 

Pantaleo, G. et al. Safety and immunogenicity of a multivalent HIV vaccine comprising envelope protein with either DNA or NYVAC vectors (HVTN 096): a phase 1b, double-blind, placebo-controlled trial. Lancet HIV 6, e737–e749 (2019).

PubMed 
PubMed Central 
Article 

Google Scholar 

Quakkelaar, E. D. et al. Improved innate and adaptive immunostimulation by genetically modified HIV-1 protein expressing NYVAC vectors. PLoS ONE 6, e16819 (2011).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Rerks-Ngarm, S. et al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N. Engl. J. Med. 361, 2209–2220 (2009).

CAS 
PubMed 
Article 

Google Scholar 

Robb, M. L. et al. Risk behaviour and time as covariates for efficacy of the HIV vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect. Dis. 12, 531–537 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Haynes, B. F. et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366, 1275–1286 (2012).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Pitisuttithum, P. et al. Late boosting of the RV144 regimen with AIDSVAX B/E and ALVAC-HIV in HIV-uninfected Thai volunteers: a double-blind, randomised controlled trial. Lancet HIV 7, e238–e248 (2020).

PubMed 
PubMed Central 
Article 

Google Scholar 

Laher, F. et al. Safety and immune responses after a 12-month booster in healthy HIV-uninfected adults in HVTN 100 in South Africa: A randomized double-blind placebo-controlled trial of ALVAC-HIV (vCP2438) and bivalent subtype C gp120/MF59 vaccines. PLoS Med. 17, e1003038 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Gray, G. E. et al. Vaccine efficacy of ALVAC-HIV and bivalent subtype C gp120-MF59 in adults. N. Engl. J. Med. 384, 1089–1100 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Arunachalam, P. S. et al. T cell-inducing vaccine durably prevents mucosal SHIV infection even with lower neutralizing antibody titers. Nat. Med. 26, 932–940 (2020).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Venkatraman, N. et al. Safety and immunogenicity of a heterologous prime-boost Ebola virus vaccine regimen in healthy adults in the United Kingdom and Senegal. J. Infect. Dis. 219, 1187–1197 (2019).

CAS 
PubMed 
Article 

Google Scholar 

Vuola, J. M. et al. Differential immunogenicity of various heterologous prime-boost vaccine regimens using DNA and viral vectors in healthy volunteers. J. Immunol. 174, 449–455 (2005).

CAS 
PubMed 
Article 

Google Scholar 

Deming, M. E. & Lyke, K. E. A ‘mix and match’ approach to SARS-CoV-2 vaccination. Nat. Med. 27, 1510–1511 (2021).

CAS 
PubMed 
Article 

Google Scholar 

Barros-Martins, J. et al. Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. Nat. Med. 27, 1525–1529 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Schmidt, T. et al. Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. Nat. Med. 27, 1530–1535 (2021).

CAS 
PubMed 
PubMed Central 
Article 

Google Scholar 

Ohlund, P., Lunden, H. & Blomstrom, A. L. Insect-specific virus evolution and potential effects on vector competence. Virus Genes 55, 127–137 (2019).

PubMed 
PubMed Central 
Article 
CAS 

Google Scholar 

Hobson-Peters, J. et al. A recombinant platform for flavivirus vaccines and diagnostics using chimeras of a new insect-specific virus. Sci. Transl. Med. 11 (2019).

Erasmus, J. H. et al. A chikungunya fever vaccine utilizing an insect-specific virus platform. Nat. Med. 23, 192–199 (2017).

CAS 
PubMed 
Article 

Google Scholar 

Source: www.nature.com