Innate metabolic responses against viral infections

Shehata, H. M. et al. Sugar or Fat? Metabolic requirements for immunity to viral infections. Front Immunol. 8, 1311 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Stepanova, M., Lam, B., Younossi, Y., Srishord, M. K. & Younossi, Z. M. Association of hepatitis C with insulin resistance and type 2 diabetes in US general population: the impact of the epidemic of obesity. J. Viral Hepat. 19, 341–345 (2012).

Article 
CAS 
PubMed 

Google Scholar 

Codo, A. C. et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 32, 437–446 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Duette, G. et al. Induction of HIF-1α by HIV-1 infection in CD4+ T cells promotes viral replication and drives extracellular vesicle-mediated inflammation. mBio https://doi.org/10.1128/mBio.00757-18 (2018).

Lahon, A., Arya, R. P. & Banerjea, A. C. Dengue virus dysregulates master transcription factors and PI3K/AKT/mTOR signaling pathway in megakaryocytes. Front. Cell. Infect. Microbiol. 11, 715208 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ajaz, S. et al. Mitochondrial metabolic manipulation by SARS-CoV-2 in peripheral blood mononuclear cells of patients with COVID-19. Am. J. Physiol. Cell Physiol. 320, C57–C65 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Qin, C. et al. SARS-CoV-2 couples evasion of inflammatory response to activated nucleotide synthesis. Proc. Natl Acad. Sci. USA 119, e2122897119 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gassen, N. C. et al. SARS-CoV-2-mediated dysregulation of metabolism and autophagy uncovers host-targeting antivirals. Nat. Commun. 12, 3818 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Palmer, C. S. et al. Increased glucose metabolic activity is associated with CD4+ T cell activation and depletion during chronic HIV infection. AIDS 28, 297–309 (2014).

Palmer, C. S. et al. Glut1 expressing proinflammatory monocytes are elevated in cART-treated and untreated HIV-1+ subjects. J. Immunol. 193, 5595–5603 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Valle-Casuso, J. C. et al. Cellular metabolism is a major determinant of HIV-1 reservoir seeding in CD4+ T cells and offers an opportunity to tackle infection. Cell Metab. 29, 611–626 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Taylor, H. E. et al. mTOR overcomes multiple metabolic restrictions to enable HIV-1 reverse transcription and intracellular transport. Cell Rep. 31, 107810 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Loisel-Meyer, S. et al. Glut1-mediated glucose transport regulates HIV infection. Proc. Natl Acad. Sci. USA 109, 2549–2554 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Datta, P. K. et al. Glutamate metabolism in HIV-1-infected macrophages: role of HIV-1 Vpr. Cell Cycle 15, 2288–2298 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Palmer, C. S., Cherry, C. L., Sada-Ovalle, I., Singh, A. & Crowe, S. M. Glucose metabolism in T cells and monocytes: new perspectives in HIV pathogenesis. EBioMedicine 6, 31–41 (2016).

Article 
PubMed 
PubMed Central 

Google Scholar 

Mullen, P. J. et al. SARS-CoV-2 infection rewires host cell metabolism and is potentially susceptible to mTORC1 inhibition. Nat. Commun. 12, 1876 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hirabara, S. M. et al. Host cell glutamine metabolism as a potential antiviral target. Clin. Sci. 135, 305–325 (2021).

Article 
CAS 

Google Scholar 

Clerc, I. et al. Entry of glucose- and glutamine-derived carbons into the citric acid cycle supports early steps of HIV-1 infection in CD4+ T cells. Nat. Metab. 1, 717–730 (2019).

Sánchez-García, F. J., Pérez-Hernández, C. A., Rodríguez-Murillo, M. & Moreno-Altamirano, M. M. B. The role of tricarboxylic acid cycle metabolites in viral infections. Front Cell. Infect. Microbiol. 11, 725043 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Codo, A. C. et al. Elevated glucose levels favor SARS-CoV-2 infection and monocyte response through a HIF-1α/glycolysis-dependent axis. Cell Metab. 32, 437–446 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Mills, E. L. et al. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nat. Metab. 3, 604–617 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Menk, A. V. et al. Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509–1521 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Reina-Campos, M., Scharping, N. E. & Goldrath, A. W. CD8+ T cell metabolism in infection and cancer. Nat. Rev. Immunol. 21, 718–738 (2021).

Kinet, S. et al. Isolated receptor binding domains of HTLV-1 and HTLV-2 envelopes bind Glut-1 on activated CD4+ and CD8+ T cells. Retrovirology 4, 31 (2007).

Manel, N. et al. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Cell 115, 449–459 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Cheng, J. J. et al. CD36 is a co-receptor for hepatitis C virus E1 protein attachment. Sci. Rep. 6, 21808 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Herker, E. et al. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat. Med. 16, 1295–1298 (2010).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang, J. et al. Epstein–Barr virus-encoded latent membrane protein 1 upregulates glucose transporter 1 transcription via the mTORC1/NF-κB signaling pathways. J. Virol. 91, e02168–16 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Thai, M. et al. MYC-induced reprogramming of glutamine catabolism supports optimal virus replication. Nat. Commun. 6, 8873 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Chambers, J. W., Maguire, T. G. & Alwine, J. C. Glutamine metabolism is essential for human cytomegalovirus infection. J. Virol. 84, 1867–1873 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Yau, C. et al. Dysregulated metabolism underpins Zika-virus-infection-associated impairment in fetal development. Cell Rep. 37, 110118 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Oehler, N. et al. Binding of hepatitis B virus to its cellular receptor alters the expression profile of genes of bile acid metabolism. Hepatology 60, 1483–1493 (2014).

Article 
CAS 
PubMed 

Google Scholar 

Shimode, S., Nakaoka, R., Shogen, H. & Miyazawa, T. Characterization of feline ASCT1 and ASCT2 as RD-114 virus receptor. J. Gen. Virol. 94, 1608–1612 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Tailor, C. S., Nouri, A., Zhao, Y., Takeuchi, Y. & Kabat, D. A sodium-dependent neutral-amino-acid transporter mediates infections of feline and baboon endogenous retroviruses and simian type D retroviruses. J. Virol. 73, 4470–4474 (1999).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lavillette, D. et al. The envelope glycoprotein of human endogenous retrovirus type W uses a divergent family of amino acid transporters/cell surface receptors. J. Virol. 76, 6442–6452 (2002).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Stein, K. R. et al. CD46 facilitates entry and dissemination of human cytomegalovirus. Nat. Commun. 10, 2699 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Segerman, A. et al. Adenovirus type 11 uses CD46 as a cellular receptor. J. Virol. 77, 9183–9191 (2003).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Joubert, P. E. et al. Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 6, 354–366 (2009).

Article 
PubMed 

Google Scholar 

Kolev, M. et al. Complement regulates nutrient influx and metabolic reprogramming during TH1 cell responses. Immunity 42, 1033–1047 (2015).

Sun, L., Wu, J., Du, F., Chen, X. & Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339, 786–791 (2013).

Article 
CAS 
PubMed 

Google Scholar 

Hopfner, K. P. & Hornung, V. Molecular mechanisms and cellular functions of cGAS–STING signalling. Nat. Rev. Mol. Cell Biol. 21, 501–521 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Domizio, J. D. et al. The cGAS–STING pathway drives type I IFN immunopathology in COVID-19. Nature 603, 145–151 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Imanishi, T. et al. Reciprocal regulation of STING and TCR signaling by mTORC1 for T cell activation and function. Life Sci. Alliance 2, e201800282 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wang, F. et al. S6K-STING interaction regulates cytosolic DNA-mediated activation of the transcription factor IRF3. Nat. Immunol. 17, 514–522 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Meade, N., King, M., Munger, J. & Walsh, D. mTOR dysregulation by vaccinia virus F17 controls multiple processes with varying roles in infection. J. Virol. 93, e00784–19 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Moon, J. S. et al. mTORC1-induced HK1-dependent glycolysis regulates NLRP3 inflammasome activation. Cell Rep. 12, 102–115 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lin, H. C. et al. Lactic acid fermentation is required for NLRP3 inflammasome activation. Front. Immunol. 12, 630380 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lu, B. et al. Novel role of PKR in inflammasome activation and HMGB1 release. Nature 488, 670–674 (2012).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Billingham, L. K. et al. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat. Immunol. 23, 692–704 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Dostert, C. et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320, 674–677 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xian, H. et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation. Immunity 54, 1463–1477 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yang, F. et al. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. Int. J. Biol. Sci. 15, 1010–1019 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Al-Hashem, F. et al. Metformin inhibits mTOR–HIF-1α axis and profibrogenic and inflammatory biomarkers in thioacetamide-induced hepatic tissue alterations. J. Cell. Physiol. 234, 9328–9337 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Krall, A. S. et al. Asparagine couples mitochondrial respiration to ATF4 activity and tumor growth. Cell Metab. 33, 1013–1026 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Rodrigues, T. S. et al. Inflammasomes are activated in response to SARS-CoV-2 infection and are associated with COVID-19 severity in patients. J. Exp. Med. 218, e20201707 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Giron, L. B. et al. Plasma markers of disrupted gut permeability in severe COVID-19 patients. Front. Immunol. 12, 686240 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hooftman, A. et al. The immunomodulatory metabolite itaconate modifies NLRP3 and inhibits inflammasome activation. Cell Metab. 32, 468–478 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Sohail, A. et al. Itaconate and derivatives reduce interferon responses and inflammation in influenza A virus infection. PLoS Pathog. 18, e1010219 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Olagnier, D. et al. SARS-CoV-2-mediated suppression of NRF2 signaling reveals potent antiviral and anti-inflammatory activity of 4-octyl-itaconate and dimethyl fumarate. Nat. Commun. 11, 4938 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Schoggins, J. W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Brenner, C. Viral infection as an NAD+ battlefield. Nat. Metab. 4, 2–3 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Welsby, I. et al. PARP12, an interferon-stimulated gene involved in the control of protein translation and inflammation. J. Biol. Chem. 289, 26642–26657 (2014).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Caprara, G. et al. PARP14 controls the nuclear accumulation of a subset of type I IFN-inducible proteins. J. Immunol. 200, 2439–2454 (2018).

Article 
CAS 
PubMed 

Google Scholar 

Li, L. et al. ADP-ribosyltransferase PARP11 suppresses Zika virus in synergy with PARP12. Cell Biosci. 11, 116 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gomes, A. P. et al. Declining NAD+ induces a pseudohypoxic state disrupting nuclear–mitochondrial communication during aging. Cell 155, 1624–1638 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhang, H. et al. NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science 352, 1436–1443 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Clement, J., Wong, M., Poljak, A., Sachdev, P. & Braidy, N. The plasma NAD+ metabolome is dysregulated in ‘normal’ aging. Rejuvenation Res. 22, 121–130 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Xiao, N. et al. Integrated cytokine and metabolite analysis reveals immunometabolic reprogramming in COVID-19 patients with therapeutic implications. Nat. Commun. 12, 1618 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wang, F. et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and proinflammatory activity. EBioMedicine 30, 303–316 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Vigo, T. et al. IFN-β enhances mesenchymal stromal (stem) cells immunomodulatory function through STAT1–3 activation and mTOR-associated promotion of glucose metabolism. Cell Death Dis. 10, 85 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Chan, C. C. et al. Type I interferon sensing unlocks dormant adipocyte inflammatory potential. Nat. Commun. 11, 2745 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Aliyari, S. R. et al. Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2. Acta Pharm. Sin. B https://doi.org/10.1016/j.apsb.2022.02.019 (2022).

Lercher, A. et al. Type I interferon signaling disrupts the hepatic urea cycle and alters systemic metabolism to suppress T cell function. Immunity 51, 1074–1087 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tannahill, G. M. et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496, 238–242 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Mills, E. L. et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167, 457–470 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Lampropoulou, V. et al. Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation. Cell Metab. 24, 158–166 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Bambouskova, M. et al. Itaconate confers tolerance to late NLRP3 inflammasome activation. Cell Rep. 34, 108756 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Regard, J. B., Sato, I. T. & Coughlin, S. R. Anatomical profiling of G-protein-coupled receptor expression. Cell 135, 561–571 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ghosh, S. & Marsh, E. N. G. Viperin: an ancient radical SAM enzyme finds its place in modern cellular metabolism and innate immunity. J. Biol. Chem. 295, 11513–11528 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gizzi, A. S. et al. A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature 558, 610–614 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Honarmand Ebrahimi, K., Vowles, J., Browne, C., McCullagh, J. & James, W. S. ddhCTP produced by the radical-SAM activity of RSAD2 (viperin) inhibits the NAD+-dependent activity of enzymes to modulate metabolism. FEBS Lett. 594, 1631–1644 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Britt, E. C. et al. Switching to the cyclic pentose phosphate pathway powers the oxidative burst in activated neutrophils. Nat. Metab. 4, 389–403 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kishimoto, N. et al. Alpha-enolase in viral target cells suppresses the human immunodeficiency virus type 1 integration. Retrovirology 17, 31 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Chang, C. H. et al. Posttranscriptional control of T cell effector function by aerobic glycolysis. Cell 153, 1239–1251 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Mills, E. L. et al. Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1. Nature 556, 113–117 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Diskin, C. et al. 4-octyl-itaconate and dimethyl fumarate inhibit COX2 expression and prostaglandin production in macrophages. J. Immunol. 207, 2561–2569 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Murray, L. A., Sheng, X. & Cristea, I. M. Orchestration of protein acetylation as a toggle for cellular defense and virus replication. Nat. Commun. 9, 4967 (2018).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Guillon, A. et al. Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein. EMBO J. 41, e108306 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Ashbrook, M. J. et al. Citrate modulates lipopolysaccharide-induced monocyte inflammatory responses. Clin. Exp. Immunol. 180, 520–530 (2015).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Williams, N. C. & O’Neill, L. A. J. A role for the Krebs cycle intermediate citrate in metabolic reprogramming in innate immunity and inflammation. Front. Immunol. 9, 141 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cappel, D. A. et al. Pyruvate-carboxylase-mediated anaplerosis promotes antioxidant capacity by sustaining TCA cycle and redox metabolism in liver. Cell Metab. 29, 1291–1305 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Vastag, L., Koyuncu, E., Grady, S. L., Shenk, T. E. & Rabinowitz, J. D. Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog. 7, e1002124 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zhou, L. et al. Hepatitis B virus rigs the cellular metabolome to avoid innate immune recognition. Nat. Commun. 12, 98 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hicks, K. G. et al. Protein-metabolite interactomics reveals novel regulation of carbohydrate metabolism. Preprint at bioRxiv https://doi.org/10.1101/2021.08.28.458030 (2021).

Garcia-Cazorla, A. et al. Pyruvate carboxylase deficiency: metabolic characteristics and new neurological aspects. Ann. Neurol. 59, 121–127 (2006).

Article 
PubMed 

Google Scholar 

Taylor, H. E. et al. Phospholipase D1 couples CD4+ T cell activation to c-Myc-dependent deoxyribonucleotide pool expansion and HIV-1 replication. PLoS Pathog. 11, e1004864 (2015).

Article 
PubMed 
PubMed Central 

Google Scholar 

Taylor, H. E. & Palmer, C. S. CD4+ T cell metabolism is a major contributor of HIV infectivity and reservoir persistence. Immunometabolism 2, e200005 (2020).

Singh, S. et al. Antioxidant nanozyme counteracts HIV-1 by modulating intracellular redox potential. EMBO Mol. Med. 13, e13314 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Shytaj, I. L. et al. Glycolysis downregulation is a hallmark of HIV-1 latency and sensitizes infected cells to oxidative stress. EMBO Mol. Med. 13, e13901 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kishimoto, N. et al. Glucose-dependent aerobic glycolysis contributes to recruiting viral components into HIV-1 particles to maintain infectivity. Biochem. Biophys. Res. Commun. 549, 187–193 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Guo, H. et al. Multi-omics analyses reveal that HIV-1 alters CD4+ T cell immunometabolism to fuel virus replication. Nat. Immunol. 22, 423–433 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Valle-Casuso, J. C. et al. Cellular metabolism is a major determinant of HIV-1 reservoir seeding in CD4+ T cells and offers an opportunity to tackle infection. Cell Metab. https://doi.org/10.1016/j.cmet.2018.11.015 (2018).

Hegedus, A. et al. Evidence for altered glutamine metabolism in human immunodeficiency virus type 1 infected primary human CD4+ T cells. AIDS Res. Hum. Retroviruses 33, 1236–1247 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Kulkarni, M. M. et al. Cellular fatty acid synthase is required for late stages of HIV-1 replication. Retrovirology 14, 45 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Palmer, C. S., Palchaudhuri, R., Albargy, H., Abdel-Mohsen, M. & Crowe, S. M. Exploiting immune cell metabolic machinery for functional HIV cure and the prevention of inflammaging. F1000Research 7, 125 (2018).

Article 
PubMed 
PubMed Central 

Google Scholar 

Couturier, J. et al. Lymphocytes upregulate CD36 in adipose tissue and liver. Adipocyte 8, 154–163 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Surendar, J. et al. Adiponectin limits IFN-γ- and IL-17-producing CD4+ T cells in obesity by restraining cell-intrinsic glycolysis. Front Immunol. 10, 2555 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Angin, M. et al. Metabolic plasticity of HIV-specific CD8+ T cells is associated with enhanced antiviral potential and natural control of HIV-1 infection. Nat. Metab. 1, 704–716 (2019).

Article 
CAS 
PubMed 

Google Scholar 

Alrubayyi, A. et al. Functional restoration of exhausted CD8+ T cells in chronic HIV-1 infection by targeting mitochondrial dysfunction. Front Immunol. 13, 908697 (2022).

Ellery, P. J. et al. The CD16+ monocyte subset is more permissive to infection and preferentially harbors HIV-1 in vivo. J. Immunol. 178, 6581–6589 (2007).

Barrero, C. A. et al. HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis. PLoS ONE 8, e68376 (2013).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Godfrey, C. et al. Obesity and fat metabolism in human immunodeficiency virus-infected individuals: immunopathogenic mechanisms and clinical implications. J. Infect. Dis. 220, 420–431 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Aounallah, M. et al. Current topics in HIV pathogenesis, part 2: Inflammation drives a Warburg-like effect on the metabolism of HIV-infected subjects. Cytokine Growth Factor Rev. 28, 1–10 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Butterfield, T. R., Landay, A. L. & Anzinger, J. J. Dysfunctional immunometabolism in HIV infection: contributing factors and implications for age-related comorbid diseases. Curr. HIV/AIDS Rep. 17, 125–137 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Anzinger, J. J. et al. Glut1 expression level on inflammatory monocytes is associated with markers of cardiovascular disease risk in HIV-infected individuals. J. Acquir. Immune Defic. Syndr. 77, e28–e30 (2018).

Article 
PubMed 

Google Scholar 

Butterfield, T. R. et al. Increased glucose transporter-1 expression on intermediate monocytes from HIV-infected women with subclinical cardiovascular disease. AIDS 31, 199–205 (2017).

Article 
CAS 
PubMed 

Google Scholar 

Butterfield, T. R. et al. Elevated CD4+ T cell glucose metabolism in HIV+ women with diabetes mellitus. AIDS https://doi.org/10.1097/qad.0000000000003272 (2022).

Maisa, A. et al. Monocytes from HIV-infected individuals show impaired cholesterol efflux and increased foam cell formation after transendothelial migration. AIDS 29, 1445–1457 (2015).

Article 
CAS 
PubMed 

Google Scholar 

Alzahrani, J. et al. Inflammatory and immunometabolic consequences of gut dysfunction in HIV: parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities. EBioMedicine 46, 522–531 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Zhang, D. et al. Metabolic regulation of gene expression by histone lactylation. Nature 574, 575–580 (2019).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Pan, R. Y. et al. Positive feedback regulation of microglial glucose metabolism by histone H4 lysine 12 lactylation in Alzheimer’s disease. Cell Metab. 34, 634–648 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Wen, H. et al. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat. Immunol. 12, 408–415 (2011).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gorwood, J. et al. The integrase inhibitors dolutegravir and raltegravir exert proadipogenic and profibrotic effects and induce insulin resistance in human/simian adipose tissue and human adipocytes. Clin. Infect. Dis. 71, e549–e560 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Bastard, J. P. et al. Altered subcutaneous adipose tissue parameters after switching ART-controlled HIV+ patients to raltegravir/maraviroc. AIDS 35, 1625–1630 (2021).

PubMed 

Google Scholar 

Heer, C. D. et al. Coronavirus infection and PARP expression dysregulate the NAD metabolome: an actionable component of innate immunity. J. Biol. Chem. 295, 17986–17996 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Cohen, M. S. Interplay between compartmentalized NAD+ synthesis and consumption: a focus on the PARP family. Genes Dev. 34, 254–262 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Stefan, N., Birkenfeld, A. L. & Schulze, M. B. Global pandemics interconnected—obesity, impaired metabolic health and COVID-19. Nat. Rev. Endocrinol. 17, 135–149 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Hoffmann, M. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 181, 271–280 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Jackson, C. B., Farzan, M., Chen, B. & Choe, H. Mechanisms of SARS-CoV-2 entry into cells. Nat. Rev. Mol. Cell Biol. 23, 3–20 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Wang, L. et al. Neuropilin-1 aggravates liver cirrhosis by promoting angiogenesis via VEGFR2-dependent PI3K/Akt pathway in hepatic sinusoidal endothelial cells. EBioMedicine 43, 525–536 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Cao, Y. et al. Neuropilin-1 upholds dedifferentiation and propagation phenotypes of renal cell carcinoma cells by activating Akt and sonic hedgehog axes. Cancer Res. 68, 8667–8672 (2008).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Banerjee, S. et al. VEGF-A165 induces human aortic smooth muscle cell migration by activating neuropilin-1-VEGFR1–PI3K axis. Biochemistry 47, 3345–3351 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Cantuti-Castelvetri, L. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 370, 856–860 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wu, C. T. et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment. Cell Metab. 33, 1565–1576 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Qadir, M. M. F. et al. SARS-CoV-2 infection of the pancreas promotes thrombofibrosis and is associated with new-onset diabetes. JCI Insight 6, e151551 (2021).

Article 
PubMed Central 

Google Scholar 

Su, Y. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 185, 881–895 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Müller, J. A. et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat. Metab. 3, 149–165 (2021).

Article 
PubMed 

Google Scholar 

Montefusco, L. et al. Acute and long-term disruption of glycometabolic control after SARS-CoV-2 infection. Nat. Metab. 3, 774–785 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Mittal, J. et al. High prevalence of post COVID-19 fatigue in patients with type 2 diabetes: a case–control study. Diabetes Metab. Syndr. 15, 102302 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Wanner, N. et al. Molecular consequences of SARS-CoV-2 liver tropism. Nat. Metab. 4, 310–319 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wei, C. et al. HDL-scavenger receptor B type 1 facilitates SARS-CoV-2 entry. Nat. Metab. 2, 1391–1400 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Barnes, E. Infection of liver hepatocytes with SARS-CoV-2. Nat. Metab. 4, 301–302 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Delorey, T. M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107–113 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Reiterer, M. et al. Hyperglycemia in acute COVID-19 is characterized by insulin resistance and adipose tissue infectivity by SARS-CoV-2. Cell Metab. 33, 2174–2188 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Olivo, A. et al. Detection of SARS-CoV-2 in subcutaneous fat but not visceral fat, and the disruption of fat lymphocyte homeostasis in both fat tissues in the macaque. Commun. Biol. 5, 542 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Obukhov, A. G. et al. SARS-CoV-2 infections and ACE2: clinical outcomes linked with increased morbidity and mortality in individuals with diabetes. Diabetes 69, 1875–1886 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Qeadan, F. et al. The associations between COVID-19 diagnosis, type 1 diabetes, and the risk of diabetic ketoacidosis: a nationwide cohort from the US using the Cerner Real-World Data. PLoS ONE 17, e0266809 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Laurenzi, A. et al. No evidence of long-term disruption of glycometabolic control after SARS-CoV-2 infection. J. Clin. Endocrinol. Metab. 107, e1009–e1019 (2022).

Article 
PubMed 

Google Scholar 

Wang, W. et al. Elevated glucose level leads to rapid COVID-19 progression and high fatality. BMC Pulm. Med. 21, 64 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wu, J. et al. Elevation of blood glucose level predicts worse outcomes in hospitalized patients with COVID-19: a retrospective cohort study. BMJ Open Diabetes Res. Care 8, e001476 (2020).

Article 
PubMed 

Google Scholar 

Wan, L. et al. GP73 is a glucogenic hormone contributing to SARS-CoV-2-induced hyperglycemia. Nat. Metab. 4, 29–43 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Chu, J. et al. Pharmacological inhibition of fatty acid synthesis blocks SARS-CoV-2 replication. Nat. Metab. 3, 1466–1475 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Wu, Z. et al. Palmitoylation of SARS-CoV-2 S protein is essential for viral infectivity. Signal Transduct. Target Ther. 6, 231 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Scherer, P. E., Kirwan, J. P. & Rosen, C. J. Post-acute sequelae of COVID-19: a metabolic perspective. eLife 11, e78200 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Zankharia, U., Yadav, A., Yi, Y., Hahn, B. H. & Collman, R. G. Highly restricted SARS-CoV-2 receptor expression and resistance to infection by primary human monocytes and monocyte-derived macrophages. J. Leukoc. Biol. 112, 569–576 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Junqueira, C. et al. FcγR-mediated SARS-CoV-2 infection of monocytes activates inflammation. Nature 606, 576–584 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Lee, J. W. et al. Integrated analysis of plasma and single immune cells uncovers metabolic changes in individuals with COVID-19. Nat. Biotechnol. 40, 110–120 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Zhu, L. et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab. 31, 1068–1077 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tong, L. et al. A glucose-like metabolite deficient in diabetes inhibits cellular entry of SARS-CoV-2. Nat. Metab. 4, 547–558 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Proal, A. D. & VanElzakker, M. B. Pathogens hijack host cell metabolism: intracellular infection as a driver of the warburg effect in cancer and other chronic inflammatory conditions. Immunometabolism 3, e210003 (2021).

Article 

Google Scholar 

Prusinkiewicz, M. A. & Mymryk, J. S. Metabolic reprogramming of the host cell by human adenovirus infection. Viruses 11, 141 (2019).

Article 
CAS 
PubMed Central 

Google Scholar 

Foo, J., Bellot, G., Pervaiz, S. & Alonso, S. Mitochondria-mediated oxidative stress during viral infection. Trends Microbiol. 30, 679–692 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Blais, E. M. et al. Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat. Commun. 8, 14250 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Fuller, K. N. Z. & Thyfault, J. P. Barriers in translating preclinical rodent exercise metabolism findings to human health. J. Appl Physiol. 130, 182–192 (2021).

Article 
PubMed 

Google Scholar 

Omarjee, L. et al. Immunometabolism at the cornerstone of inflammaging, immunosenescence, and autoimmunity in COVID-19. Aging 12, 26263–26278 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Quinn, K. M., Palchaudhuri, R., Palmer, C. S. & La Gruta, N. L. The clock is ticking: the impact of ageing on T cell metabolism. Clin. Transl. Immunol. 8, e01091 (2019).

Article 

Google Scholar 

Guillot-Sestier, M. V. et al. Microglial metabolism is a pivotal factor in sexual dimorphism in Alzheimer’s disease. Commun. Biol. 4, 711 (2021).

Article 
PubMed 
PubMed Central 

Google Scholar 

Auer, M. K. et al. 12-months metabolic changes among gender dysphoric individuals under cross-sex hormone treatment: a targeted metabolomics study. Sci. Rep. 6, 37005 (2016).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Manuel, R. S. J. & Liang, Y. Sexual dimorphism in immunometabolism and autoimmunity: impact on personalized medicine. Autoimmun. Rev. 20, 102775 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

van Valkengoed, I. G. M. et al. Ethnic differences in metabolite signatures and type 2 diabetes: a nested case–control analysis among people of South Asian, African and European origin. Nutr. Diabetes 7, 300 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Palmer, C., Hampartzoumian, T., Lloyd, A. & Zekry, A. A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection. Hepatology 48, 374–384 (2008).

Article 
CAS 
PubMed 

Google Scholar 

Palmer, C. et al. The effect of obesity on intrahepatic cytokine and chemokine expression in chronic hepatitis C infection. Gut 59, 397–404 (2010).

Article 
CAS 
PubMed 

Google Scholar 

Bressler, B. L., Guindi, M., Tomlinson, G. & Heathcote, J. High body mass index is an independent risk factor for nonresponse to antiviral treatment in chronic hepatitis C. Hepatology 38, 639–644 (2003).

Article 
CAS 
PubMed 

Google Scholar 

Maier, H. E. et al. Obesity is associated with increased susceptibility to influenza a (H1N1pdm) but Not H3N2 Infection. Clin. Infect. Dis. 73, e4345–e4352 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Tanes, C. et al. Role of dietary fiber in the recovery of the human gut microbiome and its metabolome. Cell Host Microbe 29, 394–407 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Gacesa, R. et al. Environmental factors shaping the gut microbiome in a Dutch population. Nature 604, 732–739 (2022).

Article 
CAS 
PubMed 

Google Scholar 

Hurst, J. H. et al. Age-related changes in the nasopharyngeal microbiome are associated with SARS-CoV-2 infection and symptoms among children, adolescents and young adults. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac184 (2022).

Chen, Y. et al. Signature changes in gut microbiome are associated with increased susceptibility to HIV-1 infection in MSM. Microbiome 9, 237 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Palmer, C. S. et al. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett. 591, 3319–3332 (2017).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Giron, L. B. et al. Non-invasive plasma glycomic and metabolic biomarkers of post-treatment control of HIV. Nat. Commun. 12, 3922 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Varco-Merth, B. D. et al. Rapamycin limits CD4+ T cell proliferation in simian immunodeficiency virus-infected rhesus macaques on antiretroviral therapy. J. Clin. Invest. https://doi.org/10.1172/jci156063 (2022).

Palmer, C. S. et al. Emerging role and characterization of immunometabolism: relevance to HIV pathogenesis, serious non-AIDS events, and a cure. J. Immunol. 196, 4437–4444 (2016).

Article 
CAS 
PubMed 

Google Scholar 

Netti, G. S. et al. mTOR inhibitors improve both humoral and cellular response to SARS-CoV-2 messenger RNA BNT16b2 vaccine in kidney transplant recipients. Am. J. Transpl. 22, 1475–1482 (2022).

Article 
CAS 

Google Scholar 

Garcia-Mesa, Y. et al. Dimethyl fumarate, an approved multiple sclerosis treatment, reduces brain oxidative stress in SIV-infected rhesus macaques: potential therapeutic repurposing for HIV neuroprotection. Antioxidants 10, 416 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Hitakarun, A. et al. Evaluation of the antiviral activity of orlistat (tetrahydrolipstatin) against dengue virus, Japanese encephalitis virus, Zika virus and chikungunya virus. Sci. Rep. 10, 1499 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Caputo, A., Guzman, C. A., Palmer, C. S. & Nicoli, F. Editorial: the role of systemic and cellular metabolism on susceptibility to infections and responsiveness to vaccination. Front. Cell. Infect. Microbiol. 12, 854241 (2022).

Article 
PubMed 
PubMed Central 

Google Scholar 

Hileman, C. O. et al. Plasma citrate and succinate are associated with neurocognitive impairment in older people with HIV. Clin. Infect. Dis. 73, e765–e772 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Yeoh, H. L. et al. Immunometabolic and lipidomic markers associated with the frailty index and quality of life in aging HIV+ men on antiretroviral therapy. EBioMedicine 22, 112–121 (2017).

Article 
PubMed 
PubMed Central 

Google Scholar 

Giron, L. B. et al. Phospholipid metabolism is associated with time to HIV rebound upon treatment interruption. mBio 12, e03444–20 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Tarancon-Diez, L. et al. Immunometabolism is a key factor for the persistent spontaneous elite control of HIV-1 infection. EBioMedicine 42, 86–96 (2019).

Article 
PubMed 
PubMed Central 

Google Scholar 

Ahl, P. J. et al. Met-Flow, a strategy for single-cell metabolic analysis highlights dynamic changes in immune subpopulations. Commun. Biol. 3, 305 (2020).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Masson, J. J. R. et al. The multiparametric analysis of mitochondrial dynamics in T cells from cryopreserved peripheral blood mononuclear cells. Methods Mol. Biol. 2184, 215–224 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Carbone, F. et al. Metabolomics, lipidomics and immunometabolism. Methods Mol. Biol. 2285, 319–328 (2021).

Article 
CAS 
PubMed 

Google Scholar 

Purohit, V., Wagner, A., Yosef, N. & Kuchroo, V. K. Systems-based approaches to study immunometabolism. Cell Mol. Immunol. 19, 409–420 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Weinstock, A. et al. Single-cell RNA sequencing of visceral adipose tissue leukocytes reveals that caloric restriction following obesity promotes the accumulation of a distinct macrophage population with features of phagocytic cells. Immunometabolism 1, e190008 (2019).

PubMed 
PubMed Central 

Google Scholar 

Goldberg, E. L. et al. Ketogenesis activates metabolically protective γδ T cells in visceral adipose tissue. Nat. Metab. 2, 50–61 (2020).

Article 
CAS 
PubMed 

Google Scholar 

Levine, L. S. et al. Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ T cells during the primary immune response. Immunity 54, 829–844 (2021).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Verberk, S. G. S. et al. An integrated toolbox to profile macrophage immunometabolism. Cell Rep. Methods 2, 100192 (2022).

Article 
CAS 
PubMed 
PubMed Central 

Google Scholar 

Argüello, R. J. et al. SCENITH: a flow cytometry-based method to functionally profile energy metabolism with single-cell resolution. Cell Metab. 32, 1063–1075 (2020).

Article 
PubMed 
PubMed Central 

Google Scholar 

Source: news.google.com